Properties

Label 1-3040-3040.1637-r0-0-0
Degree 11
Conductor 30403040
Sign 0.951+0.309i0.951 + 0.309i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.996 − 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (−0.258 + 0.965i)11-s + (0.0871 + 0.996i)13-s + (0.984 − 0.173i)17-s + (−0.573 + 0.819i)21-s + (0.939 − 0.342i)23-s + (−0.965 − 0.258i)27-s + (0.573 + 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (0.707 − 0.707i)37-s i·39-s + (0.642 + 0.766i)41-s + ⋯
L(s)  = 1  + (−0.996 − 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (−0.258 + 0.965i)11-s + (0.0871 + 0.996i)13-s + (0.984 − 0.173i)17-s + (−0.573 + 0.819i)21-s + (0.939 − 0.342i)23-s + (−0.965 − 0.258i)27-s + (0.573 + 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (0.707 − 0.707i)37-s i·39-s + (0.642 + 0.766i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.951+0.309i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.951 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.951+0.309i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.951 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.951+0.309i0.951 + 0.309i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1637,)\chi_{3040} (1637, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.951+0.309i)(1,\ 3040,\ (0:\ ),\ 0.951 + 0.309i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.366099911+0.2164285033i1.366099911 + 0.2164285033i
L(12)L(\frac12) \approx 1.366099911+0.2164285033i1.366099911 + 0.2164285033i
L(1)L(1) \approx 0.9257882290+0.01229853447i0.9257882290 + 0.01229853447i
L(1)L(1) \approx 0.9257882290+0.01229853447i0.9257882290 + 0.01229853447i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.9960.0871i)T 1 + (-0.996 - 0.0871i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
11 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
13 1+(0.0871+0.996i)T 1 + (0.0871 + 0.996i)T
17 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
23 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
29 1+(0.573+0.819i)T 1 + (0.573 + 0.819i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
41 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
43 1+(0.9060.422i)T 1 + (0.906 - 0.422i)T
47 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
53 1+(0.422+0.906i)T 1 + (-0.422 + 0.906i)T
59 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
61 1+(0.4220.906i)T 1 + (0.422 - 0.906i)T
67 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
71 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
73 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
79 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
83 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
89 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
97 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.02680163095747854324688596359, −18.14233314227445078116436725603, −17.66089888034394831844418443378, −17.00934216624985379918551254785, −16.133087485902146096136741312331, −15.679141890453800962087159572663, −14.94836830977733197996484883152, −14.1686071327916488270423356390, −13.13420400827212249264803319690, −12.63512352991348162073398086828, −11.80483164902412427955892083730, −11.31342599417061309613210408370, −10.57479333594950563832395999311, −9.93261812220869052619211543645, −8.99577984117938705449957804467, −8.14109304288807794201827234000, −7.597469101569938241688568819673, −6.4105612772778734882348487229, −5.84059023451579814879810005047, −5.26382432296447145000471087696, −4.61232372883949888612519016708, −3.4025289167061343479680178929, −2.73974019450844701338513734260, −1.44753939737080820287795877044, −0.68246798303738429474031534006, 0.87690297121139850235908165631, 1.522116786436144236516878014653, 2.5838237367202577286249510366, 3.89551374776936370004149494595, 4.5424468611080483546635041786, 5.06322437454883626174845627890, 6.040435834372923741479480671120, 6.87966758462807243142040806211, 7.36488810186744361782584112682, 8.076770476545707254747010620509, 9.33011387357203984251030817908, 9.91038671232563662403458695601, 10.70390688192792266805479379702, 11.22889939052089829242925536996, 11.98476210520671432072192723660, 12.65553213316524331285109052282, 13.32068922759384808528413571599, 14.26611174798216624475084599088, 14.76698673123732657884288960601, 15.805274806140453918189427137787, 16.42598681307070893827802821499, 17.062707128867347638880175652, 17.52338772607333415994218373681, 18.35131062472431237754824386859, 18.846325135473928961218721760992

Graph of the ZZ-function along the critical line