L(s) = 1 | + (−0.996 − 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (−0.258 + 0.965i)11-s + (0.0871 + 0.996i)13-s + (0.984 − 0.173i)17-s + (−0.573 + 0.819i)21-s + (0.939 − 0.342i)23-s + (−0.965 − 0.258i)27-s + (0.573 + 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (0.707 − 0.707i)37-s − i·39-s + (0.642 + 0.766i)41-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (−0.258 + 0.965i)11-s + (0.0871 + 0.996i)13-s + (0.984 − 0.173i)17-s + (−0.573 + 0.819i)21-s + (0.939 − 0.342i)23-s + (−0.965 − 0.258i)27-s + (0.573 + 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (0.707 − 0.707i)37-s − i·39-s + (0.642 + 0.766i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.951+0.309i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.951+0.309i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.951+0.309i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1637,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), 0.951+0.309i)
|
Particular Values
L(21) |
≈ |
1.366099911+0.2164285033i |
L(21) |
≈ |
1.366099911+0.2164285033i |
L(1) |
≈ |
0.9257882290+0.01229853447i |
L(1) |
≈ |
0.9257882290+0.01229853447i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.996−0.0871i)T |
| 7 | 1+(0.5−0.866i)T |
| 11 | 1+(−0.258+0.965i)T |
| 13 | 1+(0.0871+0.996i)T |
| 17 | 1+(0.984−0.173i)T |
| 23 | 1+(0.939−0.342i)T |
| 29 | 1+(0.573+0.819i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1+(0.707−0.707i)T |
| 41 | 1+(0.642+0.766i)T |
| 43 | 1+(0.906−0.422i)T |
| 47 | 1+(−0.984−0.173i)T |
| 53 | 1+(−0.422+0.906i)T |
| 59 | 1+(−0.573+0.819i)T |
| 61 | 1+(0.422−0.906i)T |
| 67 | 1+(0.819−0.573i)T |
| 71 | 1+(−0.342+0.939i)T |
| 73 | 1+(−0.766+0.642i)T |
| 79 | 1+(−0.766+0.642i)T |
| 83 | 1+(0.965−0.258i)T |
| 89 | 1+(−0.642+0.766i)T |
| 97 | 1+(0.984−0.173i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.02680163095747854324688596359, −18.14233314227445078116436725603, −17.66089888034394831844418443378, −17.00934216624985379918551254785, −16.133087485902146096136741312331, −15.679141890453800962087159572663, −14.94836830977733197996484883152, −14.1686071327916488270423356390, −13.13420400827212249264803319690, −12.63512352991348162073398086828, −11.80483164902412427955892083730, −11.31342599417061309613210408370, −10.57479333594950563832395999311, −9.93261812220869052619211543645, −8.99577984117938705449957804467, −8.14109304288807794201827234000, −7.597469101569938241688568819673, −6.4105612772778734882348487229, −5.84059023451579814879810005047, −5.26382432296447145000471087696, −4.61232372883949888612519016708, −3.4025289167061343479680178929, −2.73974019450844701338513734260, −1.44753939737080820287795877044, −0.68246798303738429474031534006,
0.87690297121139850235908165631, 1.522116786436144236516878014653, 2.5838237367202577286249510366, 3.89551374776936370004149494595, 4.5424468611080483546635041786, 5.06322437454883626174845627890, 6.040435834372923741479480671120, 6.87966758462807243142040806211, 7.36488810186744361782584112682, 8.076770476545707254747010620509, 9.33011387357203984251030817908, 9.91038671232563662403458695601, 10.70390688192792266805479379702, 11.22889939052089829242925536996, 11.98476210520671432072192723660, 12.65553213316524331285109052282, 13.32068922759384808528413571599, 14.26611174798216624475084599088, 14.76698673123732657884288960601, 15.805274806140453918189427137787, 16.42598681307070893827802821499, 17.062707128867347638880175652, 17.52338772607333415994218373681, 18.35131062472431237754824386859, 18.846325135473928961218721760992