L(s) = 1 | + (−0.433 + 0.900i)2-s + (0.781 + 0.623i)3-s + (−0.623 − 0.781i)4-s + (0.900 + 0.433i)5-s + (−0.900 + 0.433i)6-s + (−0.623 + 0.781i)7-s + (0.974 − 0.222i)8-s + (0.222 + 0.974i)9-s + (−0.781 + 0.623i)10-s − i·12-s + (−0.222 + 0.974i)13-s + (−0.433 − 0.900i)14-s + (0.433 + 0.900i)15-s + (−0.222 + 0.974i)16-s − i·17-s + (−0.974 − 0.222i)18-s + ⋯ |
L(s) = 1 | + (−0.433 + 0.900i)2-s + (0.781 + 0.623i)3-s + (−0.623 − 0.781i)4-s + (0.900 + 0.433i)5-s + (−0.900 + 0.433i)6-s + (−0.623 + 0.781i)7-s + (0.974 − 0.222i)8-s + (0.222 + 0.974i)9-s + (−0.781 + 0.623i)10-s − i·12-s + (−0.222 + 0.974i)13-s + (−0.433 − 0.900i)14-s + (0.433 + 0.900i)15-s + (−0.222 + 0.974i)16-s − i·17-s + (−0.974 − 0.222i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s)L(s)(−0.853+0.521i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s)L(s)(−0.853+0.521i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
−0.853+0.521i
|
Analytic conductor: |
1.48142 |
Root analytic conductor: |
1.48142 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (0: ), −0.853+0.521i)
|
Particular Values
L(21) |
≈ |
0.3529600715+1.254131298i |
L(21) |
≈ |
0.3529600715+1.254131298i |
L(1) |
≈ |
0.7692763753+0.8086545298i |
L(1) |
≈ |
0.7692763753+0.8086545298i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(−0.433+0.900i)T |
| 3 | 1+(0.781+0.623i)T |
| 5 | 1+(0.900+0.433i)T |
| 7 | 1+(−0.623+0.781i)T |
| 13 | 1+(−0.222+0.974i)T |
| 17 | 1−iT |
| 19 | 1+(0.781−0.623i)T |
| 23 | 1+(−0.900+0.433i)T |
| 31 | 1+(0.433−0.900i)T |
| 37 | 1+(−0.974+0.222i)T |
| 41 | 1+iT |
| 43 | 1+(0.433+0.900i)T |
| 47 | 1+(0.974+0.222i)T |
| 53 | 1+(−0.900−0.433i)T |
| 59 | 1+T |
| 61 | 1+(−0.781−0.623i)T |
| 67 | 1+(0.222+0.974i)T |
| 71 | 1+(0.222−0.974i)T |
| 73 | 1+(−0.433−0.900i)T |
| 79 | 1+(−0.974+0.222i)T |
| 83 | 1+(−0.623−0.781i)T |
| 89 | 1+(0.433−0.900i)T |
| 97 | 1+(0.781−0.623i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.04207476684340973871779897969, −24.01475395827071206832266561569, −22.82716109078162802254014657507, −21.935007089094350137295538214361, −20.802054035490924427200092847637, −20.28859216940405294054051864954, −19.57473379965921716482989792735, −18.63939576236626102479692013628, −17.66253180400903467270133205491, −17.11633945705958064351879292365, −15.853536714229150745929479111868, −14.176461701551902832922823798289, −13.7041491049133549157893420402, −12.67032047500674900627341518056, −12.31894688301142967820556441787, −10.43737490605532418337187459835, −10.0196390172163114971438432934, −8.93569821182328143486757365056, −8.09559913128448535524383034706, −7.05571757910898308806194193390, −5.69612155603500112971830026459, −4.04785699933730836650096602429, −3.09845580277616490084140226417, −1.963857656664691627547443525903, −0.91685113363123022106528840300,
1.93348262372945554630436639440, 3.03604170773066841505000125416, 4.59573445601925365626367851842, 5.60324446675486875793711147085, 6.62644778824183304287443333954, 7.64368358772397755372944612526, 8.97969502531370941613491740565, 9.48205996684280012863518646603, 10.080846092734776999482845598447, 11.48964365474974847574228561747, 13.24031110212641889287846173733, 13.937241809949079503555772054564, 14.63653203053287509958848681358, 15.693690496471133315850321249958, 16.207855951133635529142877817418, 17.33931663717584540182404587076, 18.40424961717881004821348588720, 19.00673623457785535182325402303, 19.99795976695568058933379720654, 21.21354485503807062268754140469, 22.122155339628694866958936078334, 22.58549195246271335400451128270, 24.17253949403403499344882479637, 24.89854729645083837768877228334, 25.64892570571564758004025143629