L(s) = 1 | + (−0.512 + 0.858i)2-s + (−0.880 − 0.473i)3-s + (−0.473 − 0.880i)4-s + (0.995 − 0.0896i)5-s + (0.858 − 0.512i)6-s + (−0.983 − 0.178i)7-s + (0.998 + 0.0448i)8-s + (0.550 + 0.834i)9-s + (−0.433 + 0.900i)10-s + i·12-s + (0.936 − 0.351i)13-s + (0.657 − 0.753i)14-s + (−0.919 − 0.393i)15-s + (−0.550 + 0.834i)16-s + (−0.951 + 0.309i)17-s + (−0.998 + 0.0448i)18-s + ⋯ |
L(s) = 1 | + (−0.512 + 0.858i)2-s + (−0.880 − 0.473i)3-s + (−0.473 − 0.880i)4-s + (0.995 − 0.0896i)5-s + (0.858 − 0.512i)6-s + (−0.983 − 0.178i)7-s + (0.998 + 0.0448i)8-s + (0.550 + 0.834i)9-s + (−0.433 + 0.900i)10-s + i·12-s + (0.936 − 0.351i)13-s + (0.657 − 0.753i)14-s + (−0.919 − 0.393i)15-s + (−0.550 + 0.834i)16-s + (−0.951 + 0.309i)17-s + (−0.998 + 0.0448i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s)L(s)(0.993−0.114i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s)L(s)(0.993−0.114i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
0.993−0.114i
|
Analytic conductor: |
1.48142 |
Root analytic conductor: |
1.48142 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(118,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (0: ), 0.993−0.114i)
|
Particular Values
L(21) |
≈ |
0.7209818794−0.04133364924i |
L(21) |
≈ |
0.7209818794−0.04133364924i |
L(1) |
≈ |
0.6813320670+0.07193994914i |
L(1) |
≈ |
0.6813320670+0.07193994914i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(−0.512+0.858i)T |
| 3 | 1+(−0.880−0.473i)T |
| 5 | 1+(0.995−0.0896i)T |
| 7 | 1+(−0.983−0.178i)T |
| 13 | 1+(0.936−0.351i)T |
| 17 | 1+(−0.951+0.309i)T |
| 19 | 1+(0.178+0.983i)T |
| 23 | 1+(−0.222−0.974i)T |
| 31 | 1+(0.512−0.858i)T |
| 37 | 1+(−0.266−0.963i)T |
| 41 | 1+(0.587+0.809i)T |
| 43 | 1+(0.974−0.222i)T |
| 47 | 1+(0.266−0.963i)T |
| 53 | 1+(0.858+0.512i)T |
| 59 | 1+(−0.809−0.587i)T |
| 61 | 1+(0.722−0.691i)T |
| 67 | 1+(−0.623+0.781i)T |
| 71 | 1+(0.550−0.834i)T |
| 73 | 1+(0.919+0.393i)T |
| 79 | 1+(0.834−0.550i)T |
| 83 | 1+(−0.134+0.990i)T |
| 89 | 1+(0.974+0.222i)T |
| 97 | 1+(−0.722−0.691i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.699729929915453066852161892081, −24.227532845742998897029262545064, −22.90867709724511144823206943308, −22.31010883521965877407452905605, −21.579581935791289216824035018794, −20.91649234244197402268123771359, −19.82434816765454487322139785035, −18.76216739350814918290723695402, −17.86214589987144439172097934467, −17.36665350850619302713543100298, −16.2662093828964280015831991848, −15.60767066996553891235377354476, −13.74493633186101788947356431631, −13.14970234824310301508771467111, −12.10074418382168203118104604835, −11.10406013262582564820528267326, −10.38385831951331859096681194737, −9.39254242305258227788305918355, −8.966623143297475051760242111788, −7.00700742525448635494221724225, −6.15659046638504368045758643199, −4.94342626460580805719337988424, −3.71852019463653827872271339080, −2.55634285317163455692317378889, −1.0916459832585335036593782000,
0.77711457949007877843152138372, 2.11416713440650926073142137372, 4.21312984870262978343595500598, 5.61935594919178001939786679237, 6.16607938039224561730437678067, 6.84817519496329285304759814805, 8.132027332881791779303432915454, 9.27038142173717061529090284896, 10.24982840530309586362270994345, 10.87414125022182104676843410606, 12.56485450058923792278516037161, 13.300321983794839595963347746014, 14.04833141581648580037616937096, 15.48741278407194519653194606379, 16.38835879937828495032591233926, 16.93497042182997741607201093407, 17.92562222886164166766244583529, 18.44941021408941976711975158688, 19.398219737989084687965816710220, 20.59412636425054645111583379819, 22.00497239267761539539194789224, 22.6950870799304953217768621943, 23.33797434908554979730264003531, 24.54043037432740447273427903637, 24.96674105427182011390058685595