L(s) = 1 | + (0.309 − 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (−0.309 − 0.951i)6-s + (0.809 + 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s − 12-s + (−0.309 + 0.951i)13-s + (0.809 − 0.587i)14-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (−0.309 − 0.951i)6-s + (0.809 + 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s − 12-s + (−0.309 + 0.951i)13-s + (0.809 − 0.587i)14-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s+1)L(s)(0.970−0.242i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s+1)L(s)(0.970−0.242i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
0.970−0.242i
|
Analytic conductor: |
34.2813 |
Root analytic conductor: |
34.2813 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(173,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (1: ), 0.970−0.242i)
|
Particular Values
L(21) |
≈ |
2.975812655−0.3658061893i |
L(21) |
≈ |
2.975812655−0.3658061893i |
L(1) |
≈ |
1.585550907−0.5275101745i |
L(1) |
≈ |
1.585550907−0.5275101745i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(0.309−0.951i)T |
| 3 | 1+(0.809−0.587i)T |
| 5 | 1+(0.309+0.951i)T |
| 7 | 1+(0.809+0.587i)T |
| 13 | 1+(−0.309+0.951i)T |
| 17 | 1+(0.309+0.951i)T |
| 19 | 1+(−0.809+0.587i)T |
| 23 | 1+T |
| 31 | 1+(−0.309+0.951i)T |
| 37 | 1+(0.809+0.587i)T |
| 41 | 1+(−0.809+0.587i)T |
| 43 | 1+T |
| 47 | 1+(0.809−0.587i)T |
| 53 | 1+(0.309−0.951i)T |
| 59 | 1+(−0.809−0.587i)T |
| 61 | 1+(0.309+0.951i)T |
| 67 | 1+T |
| 71 | 1+(0.309+0.951i)T |
| 73 | 1+(−0.809−0.587i)T |
| 79 | 1+(0.309−0.951i)T |
| 83 | 1+(−0.309−0.951i)T |
| 89 | 1−T |
| 97 | 1+(−0.309+0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.00018560080073000000176230328, −24.306406343194257486165057012, −23.392626856524677192394155702468, −22.2987797747203613578158649618, −21.28904085569709369363347263663, −20.70433788863753874033022238263, −19.88441200151556189827417505339, −18.508539427728648530760606009489, −17.29066905771034104004073952698, −16.84943600715721988968165194505, −15.74258844098168473458484634828, −15.013150509723726162574867132924, −14.0876393655680954639106170840, −13.36679869959395757050195681919, −12.530041709766043236432171576451, −10.9364926901540191355962345337, −9.66636548552877858481562000924, −8.90031573341954057788673883268, −8.00135781345368706552250618979, −7.28435294987115872374017086993, −5.547394137932033107170402708168, −4.80439807361477790875663226978, −4.03256451482309436320013143031, −2.58755174232313934436942576403, −0.73553157410178355830529433022,
1.50543301574464552436575473878, 2.195530317694804362318169512985, 3.19518970913692417604369423107, 4.32599980553441444912526757487, 5.78245112027034053327127762257, 6.853058092233154513142582873202, 8.20181478924724043863194536269, 9.040794128422663353874912289876, 10.10289509690587626039836255395, 11.117013288041133460591511119263, 12.0386931811889496066025056807, 12.93535174945673665263176478249, 13.98917758257257759494122148251, 14.67018353725651037384893309972, 15.08990875531267449428940106538, 17.2048181244766172643515620126, 18.11717662501245453976940870396, 18.91361086703762068659227453703, 19.262527712428900111134783211180, 20.52480665296935016954944766415, 21.442391633503382261712779359624, 21.75656437964906827838199653268, 23.211859384497717395086702592458, 23.809300649567949419639199788738, 24.89170904454863970285847357285