L(s) = 1 | + (0.309 − 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (−0.309 − 0.951i)6-s + (0.809 + 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s − 12-s + (−0.309 + 0.951i)13-s + (0.809 − 0.587i)14-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (−0.309 − 0.951i)6-s + (0.809 + 0.587i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 10-s − 12-s + (−0.309 + 0.951i)13-s + (0.809 − 0.587i)14-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (0.309 + 0.951i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.975812655 - 0.3658061893i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.975812655 - 0.3658061893i\) |
\(L(1)\) |
\(\approx\) |
\(1.585550907 - 0.5275101745i\) |
\(L(1)\) |
\(\approx\) |
\(1.585550907 - 0.5275101745i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (-0.309 + 0.951i)T \) |
| 17 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.809 - 0.587i)T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.00018560080073000000176230328, −24.306406343194257486165057012, −23.392626856524677192394155702468, −22.2987797747203613578158649618, −21.28904085569709369363347263663, −20.70433788863753874033022238263, −19.88441200151556189827417505339, −18.508539427728648530760606009489, −17.29066905771034104004073952698, −16.84943600715721988968165194505, −15.74258844098168473458484634828, −15.013150509723726162574867132924, −14.0876393655680954639106170840, −13.36679869959395757050195681919, −12.530041709766043236432171576451, −10.9364926901540191355962345337, −9.66636548552877858481562000924, −8.90031573341954057788673883268, −8.00135781345368706552250618979, −7.28435294987115872374017086993, −5.547394137932033107170402708168, −4.80439807361477790875663226978, −4.03256451482309436320013143031, −2.58755174232313934436942576403, −0.73553157410178355830529433022,
1.50543301574464552436575473878, 2.195530317694804362318169512985, 3.19518970913692417604369423107, 4.32599980553441444912526757487, 5.78245112027034053327127762257, 6.853058092233154513142582873202, 8.20181478924724043863194536269, 9.040794128422663353874912289876, 10.10289509690587626039836255395, 11.117013288041133460591511119263, 12.0386931811889496066025056807, 12.93535174945673665263176478249, 13.98917758257257759494122148251, 14.67018353725651037384893309972, 15.08990875531267449428940106538, 17.2048181244766172643515620126, 18.11717662501245453976940870396, 18.91361086703762068659227453703, 19.262527712428900111134783211180, 20.52480665296935016954944766415, 21.442391633503382261712779359624, 21.75656437964906827838199653268, 23.211859384497717395086702592458, 23.809300649567949419639199788738, 24.89170904454863970285847357285