L(s) = 1 | + (−0.266 + 0.963i)2-s + (−0.512 − 0.858i)3-s + (−0.858 − 0.512i)4-s + (0.0448 + 0.998i)5-s + (0.963 − 0.266i)6-s + (−0.995 − 0.0896i)7-s + (0.722 − 0.691i)8-s + (−0.473 + 0.880i)9-s + (−0.974 − 0.222i)10-s + i·12-s + (−0.983 + 0.178i)13-s + (0.351 − 0.936i)14-s + (0.834 − 0.550i)15-s + (0.473 + 0.880i)16-s + (−0.587 + 0.809i)17-s + (−0.722 − 0.691i)18-s + ⋯ |
L(s) = 1 | + (−0.266 + 0.963i)2-s + (−0.512 − 0.858i)3-s + (−0.858 − 0.512i)4-s + (0.0448 + 0.998i)5-s + (0.963 − 0.266i)6-s + (−0.995 − 0.0896i)7-s + (0.722 − 0.691i)8-s + (−0.473 + 0.880i)9-s + (−0.974 − 0.222i)10-s + i·12-s + (−0.983 + 0.178i)13-s + (0.351 − 0.936i)14-s + (0.834 − 0.550i)15-s + (0.473 + 0.880i)16-s + (−0.587 + 0.809i)17-s + (−0.722 − 0.691i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 319 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2992122885 - 0.09516156968i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2992122885 - 0.09516156968i\) |
\(L(1)\) |
\(\approx\) |
\(0.4874166386 + 0.1936049225i\) |
\(L(1)\) |
\(\approx\) |
\(0.4874166386 + 0.1936049225i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.266 + 0.963i)T \) |
| 3 | \( 1 + (-0.512 - 0.858i)T \) |
| 5 | \( 1 + (0.0448 + 0.998i)T \) |
| 7 | \( 1 + (-0.995 - 0.0896i)T \) |
| 13 | \( 1 + (-0.983 + 0.178i)T \) |
| 17 | \( 1 + (-0.587 + 0.809i)T \) |
| 19 | \( 1 + (0.0896 + 0.995i)T \) |
| 23 | \( 1 + (0.623 - 0.781i)T \) |
| 31 | \( 1 + (-0.266 + 0.963i)T \) |
| 37 | \( 1 + (-0.990 + 0.134i)T \) |
| 41 | \( 1 + (-0.951 + 0.309i)T \) |
| 43 | \( 1 + (-0.781 - 0.623i)T \) |
| 47 | \( 1 + (0.990 + 0.134i)T \) |
| 53 | \( 1 + (-0.963 - 0.266i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.919 + 0.393i)T \) |
| 67 | \( 1 + (0.900 - 0.433i)T \) |
| 71 | \( 1 + (-0.473 - 0.880i)T \) |
| 73 | \( 1 + (0.834 - 0.550i)T \) |
| 79 | \( 1 + (-0.880 - 0.473i)T \) |
| 83 | \( 1 + (0.753 - 0.657i)T \) |
| 89 | \( 1 + (0.781 - 0.623i)T \) |
| 97 | \( 1 + (0.919 - 0.393i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.20034382961276449879684984356, −23.90202360640540789941019273474, −22.88277738979691354008273922035, −22.11298708482500029726826702285, −21.52608879895284846948166654906, −20.39562472776424186860677212684, −19.97055433618041404324613543244, −18.94562897085992518997180885814, −17.570470940611876268602104033577, −17.07300609183563677603080331430, −16.13712492872911329093557998765, −15.26785652362601728945661848519, −13.68691916725377180935228528042, −12.8498777364702965599123881592, −11.99250196089131677495040283294, −11.20066106039486513812017801352, −9.93110595187241960821141947086, −9.44318101400340082101828585209, −8.69854830439717392651108625837, −7.092374335829949430318060447252, −5.431972709785842183723364822231, −4.75344241686367640309886373827, −3.658128607846882168032357749830, −2.52031303420189397801530273669, −0.692440018659118622095461733719,
0.1718168501562261982818911821, 1.93743976486308394248172741160, 3.45805661286494633470776029747, 5.05233799673687875613341334018, 6.243471302840111568245196727324, 6.73703568780181955412710047122, 7.50693570944019978913990098529, 8.669754017090693682209412886386, 10.03705206870942214004350170165, 10.66129118618647285243658897850, 12.16341786099888082281945082095, 13.03338367919743800557759229095, 14.01112807786261078280151707785, 14.796349506386369380591257818690, 15.88481291732382815565631006049, 16.9015158941251096565277756617, 17.487290346230932438376666273604, 18.62869192656591419030200473077, 19.007531670207400436928605439576, 19.85090584900127042771285357511, 21.93694422857572144932090866965, 22.4046160232962751400636022295, 23.18004167316818433532269054952, 23.91977088802996322270900765004, 24.99692200295560265902810221758