L(s) = 1 | + (−0.266 + 0.963i)2-s + (−0.512 − 0.858i)3-s + (−0.858 − 0.512i)4-s + (0.0448 + 0.998i)5-s + (0.963 − 0.266i)6-s + (−0.995 − 0.0896i)7-s + (0.722 − 0.691i)8-s + (−0.473 + 0.880i)9-s + (−0.974 − 0.222i)10-s + i·12-s + (−0.983 + 0.178i)13-s + (0.351 − 0.936i)14-s + (0.834 − 0.550i)15-s + (0.473 + 0.880i)16-s + (−0.587 + 0.809i)17-s + (−0.722 − 0.691i)18-s + ⋯ |
L(s) = 1 | + (−0.266 + 0.963i)2-s + (−0.512 − 0.858i)3-s + (−0.858 − 0.512i)4-s + (0.0448 + 0.998i)5-s + (0.963 − 0.266i)6-s + (−0.995 − 0.0896i)7-s + (0.722 − 0.691i)8-s + (−0.473 + 0.880i)9-s + (−0.974 − 0.222i)10-s + i·12-s + (−0.983 + 0.178i)13-s + (0.351 − 0.936i)14-s + (0.834 − 0.550i)15-s + (0.473 + 0.880i)16-s + (−0.587 + 0.809i)17-s + (−0.722 − 0.691i)18-s + ⋯ |
Λ(s)=(=(319s/2ΓR(s+1)L(s)(0.816−0.577i)Λ(1−s)
Λ(s)=(=(319s/2ΓR(s+1)L(s)(0.816−0.577i)Λ(1−s)
Degree: |
1 |
Conductor: |
319
= 11⋅29
|
Sign: |
0.816−0.577i
|
Analytic conductor: |
34.2813 |
Root analytic conductor: |
34.2813 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ319(214,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 319, (1: ), 0.816−0.577i)
|
Particular Values
L(21) |
≈ |
0.2992122885−0.09516156968i |
L(21) |
≈ |
0.2992122885−0.09516156968i |
L(1) |
≈ |
0.4874166386+0.1936049225i |
L(1) |
≈ |
0.4874166386+0.1936049225i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 29 | 1 |
good | 2 | 1+(−0.266+0.963i)T |
| 3 | 1+(−0.512−0.858i)T |
| 5 | 1+(0.0448+0.998i)T |
| 7 | 1+(−0.995−0.0896i)T |
| 13 | 1+(−0.983+0.178i)T |
| 17 | 1+(−0.587+0.809i)T |
| 19 | 1+(0.0896+0.995i)T |
| 23 | 1+(0.623−0.781i)T |
| 31 | 1+(−0.266+0.963i)T |
| 37 | 1+(−0.990+0.134i)T |
| 41 | 1+(−0.951+0.309i)T |
| 43 | 1+(−0.781−0.623i)T |
| 47 | 1+(0.990+0.134i)T |
| 53 | 1+(−0.963−0.266i)T |
| 59 | 1+(0.309−0.951i)T |
| 61 | 1+(0.919+0.393i)T |
| 67 | 1+(0.900−0.433i)T |
| 71 | 1+(−0.473−0.880i)T |
| 73 | 1+(0.834−0.550i)T |
| 79 | 1+(−0.880−0.473i)T |
| 83 | 1+(0.753−0.657i)T |
| 89 | 1+(0.781−0.623i)T |
| 97 | 1+(0.919−0.393i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.20034382961276449879684984356, −23.90202360640540789941019273474, −22.88277738979691354008273922035, −22.11298708482500029726826702285, −21.52608879895284846948166654906, −20.39562472776424186860677212684, −19.97055433618041404324613543244, −18.94562897085992518997180885814, −17.570470940611876268602104033577, −17.07300609183563677603080331430, −16.13712492872911329093557998765, −15.26785652362601728945661848519, −13.68691916725377180935228528042, −12.8498777364702965599123881592, −11.99250196089131677495040283294, −11.20066106039486513812017801352, −9.93110595187241960821141947086, −9.44318101400340082101828585209, −8.69854830439717392651108625837, −7.092374335829949430318060447252, −5.431972709785842183723364822231, −4.75344241686367640309886373827, −3.658128607846882168032357749830, −2.52031303420189397801530273669, −0.692440018659118622095461733719,
0.1718168501562261982818911821, 1.93743976486308394248172741160, 3.45805661286494633470776029747, 5.05233799673687875613341334018, 6.243471302840111568245196727324, 6.73703568780181955412710047122, 7.50693570944019978913990098529, 8.669754017090693682209412886386, 10.03705206870942214004350170165, 10.66129118618647285243658897850, 12.16341786099888082281945082095, 13.03338367919743800557759229095, 14.01112807786261078280151707785, 14.796349506386369380591257818690, 15.88481291732382815565631006049, 16.9015158941251096565277756617, 17.487290346230932438376666273604, 18.62869192656591419030200473077, 19.007531670207400436928605439576, 19.85090584900127042771285357511, 21.93694422857572144932090866965, 22.4046160232962751400636022295, 23.18004167316818433532269054952, 23.91977088802996322270900765004, 24.99692200295560265902810221758