Properties

Label 1-3400-3400.1277-r1-0-0
Degree 11
Conductor 34003400
Sign 0.6480.760i-0.648 - 0.760i
Analytic cond. 365.380365.380
Root an. cond. 365.380365.380
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.156 − 0.987i)3-s + (0.707 − 0.707i)7-s + (−0.951 + 0.309i)9-s + (−0.891 + 0.453i)11-s + (0.951 − 0.309i)13-s + (−0.587 − 0.809i)19-s + (−0.809 − 0.587i)21-s + (−0.453 − 0.891i)23-s + (0.453 + 0.891i)27-s + (0.987 − 0.156i)29-s + (−0.156 + 0.987i)31-s + (0.587 + 0.809i)33-s + (0.453 − 0.891i)37-s + (−0.453 − 0.891i)39-s + (0.453 − 0.891i)41-s + ⋯
L(s)  = 1  + (−0.156 − 0.987i)3-s + (0.707 − 0.707i)7-s + (−0.951 + 0.309i)9-s + (−0.891 + 0.453i)11-s + (0.951 − 0.309i)13-s + (−0.587 − 0.809i)19-s + (−0.809 − 0.587i)21-s + (−0.453 − 0.891i)23-s + (0.453 + 0.891i)27-s + (0.987 − 0.156i)29-s + (−0.156 + 0.987i)31-s + (0.587 + 0.809i)33-s + (0.453 − 0.891i)37-s + (−0.453 − 0.891i)39-s + (0.453 − 0.891i)41-s + ⋯

Functional equation

Λ(s)=(3400s/2ΓR(s+1)L(s)=((0.6480.760i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.648 - 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3400s/2ΓR(s+1)L(s)=((0.6480.760i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3400 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.648 - 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 34003400    =    2352172^{3} \cdot 5^{2} \cdot 17
Sign: 0.6480.760i-0.648 - 0.760i
Analytic conductor: 365.380365.380
Root analytic conductor: 365.380365.380
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3400(1277,)\chi_{3400} (1277, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3400, (1: ), 0.6480.760i)(1,\ 3400,\ (1:\ ),\ -0.648 - 0.760i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.91730928961.988245359i0.9173092896 - 1.988245359i
L(12)L(\frac12) \approx 0.91730928961.988245359i0.9173092896 - 1.988245359i
L(1)L(1) \approx 0.96323303960.5047186165i0.9632330396 - 0.5047186165i
L(1)L(1) \approx 0.96323303960.5047186165i0.9632330396 - 0.5047186165i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+(0.1560.987i)T 1 + (-0.156 - 0.987i)T
7 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
11 1+(0.891+0.453i)T 1 + (-0.891 + 0.453i)T
13 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
19 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
23 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
29 1+(0.9870.156i)T 1 + (0.987 - 0.156i)T
31 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
37 1+(0.4530.891i)T 1 + (0.453 - 0.891i)T
41 1+(0.4530.891i)T 1 + (0.453 - 0.891i)T
43 1+T 1 + T
47 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
53 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
59 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
61 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
67 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
71 1+(0.987+0.156i)T 1 + (-0.987 + 0.156i)T
73 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
79 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
83 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
89 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
97 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.82579161232560488058442024141, −18.05834951385777826687800230901, −17.64057885134272345016651690632, −16.488308591496242392642214718687, −16.25626705081818186396786505073, −15.34069886073089228159406396304, −14.98980536232705935487400406261, −14.11377830917768812991582523671, −13.47369297897690882315025030893, −12.543243232855425922582373683180, −11.54296305104090101594315204693, −11.3299813745934167836248651438, −10.438307249726417629632136977397, −9.84625524135173418266799279213, −8.94527650215857565818957338286, −8.30836358887224861779954888364, −7.87122316406568858945352368535, −6.435592006227046393437803224974, −5.79298260604923946585546909343, −5.252948414278944528033447712534, −4.37745335213254065396205085286, −3.69354681294614431999994507064, −2.79236907827227045029281090367, −1.9677758708129226753929220967, −0.79649605895709794514826697877, 0.470232100345537002598883595546, 1.02905788891700511737135349244, 2.1082591767972318576143642864, 2.660697381980247607303828552414, 3.85140341875251793873374798786, 4.70282816776292030128467740219, 5.44767911864896240219312326710, 6.31264426283455351391555906870, 7.011483875936993268959033349639, 7.68926687837881708425674486439, 8.325530224088494070882610184602, 8.89826859987928880704078294833, 10.228270725250579740967918731180, 10.792419831700105161041889272579, 11.270789723730008016351963338687, 12.2895471466796596670431792512, 12.830020391362235650000441801901, 13.46383793740652931345687973322, 14.14580767977975884589192291544, 14.70431034157827550578784992988, 15.7771158828432341622144973161, 16.28019912587925630821950706955, 17.37011931262223276212133169798, 17.74856652732114360148166547503, 18.18035357850165333069165177027

Graph of the ZZ-function along the critical line