L(s) = 1 | + (−0.156 − 0.987i)3-s + (0.707 − 0.707i)7-s + (−0.951 + 0.309i)9-s + (−0.891 + 0.453i)11-s + (0.951 − 0.309i)13-s + (−0.587 − 0.809i)19-s + (−0.809 − 0.587i)21-s + (−0.453 − 0.891i)23-s + (0.453 + 0.891i)27-s + (0.987 − 0.156i)29-s + (−0.156 + 0.987i)31-s + (0.587 + 0.809i)33-s + (0.453 − 0.891i)37-s + (−0.453 − 0.891i)39-s + (0.453 − 0.891i)41-s + ⋯ |
L(s) = 1 | + (−0.156 − 0.987i)3-s + (0.707 − 0.707i)7-s + (−0.951 + 0.309i)9-s + (−0.891 + 0.453i)11-s + (0.951 − 0.309i)13-s + (−0.587 − 0.809i)19-s + (−0.809 − 0.587i)21-s + (−0.453 − 0.891i)23-s + (0.453 + 0.891i)27-s + (0.987 − 0.156i)29-s + (−0.156 + 0.987i)31-s + (0.587 + 0.809i)33-s + (0.453 − 0.891i)37-s + (−0.453 − 0.891i)39-s + (0.453 − 0.891i)41-s + ⋯ |
Λ(s)=(=(3400s/2ΓR(s+1)L(s)(−0.648−0.760i)Λ(1−s)
Λ(s)=(=(3400s/2ΓR(s+1)L(s)(−0.648−0.760i)Λ(1−s)
Degree: |
1 |
Conductor: |
3400
= 23⋅52⋅17
|
Sign: |
−0.648−0.760i
|
Analytic conductor: |
365.380 |
Root analytic conductor: |
365.380 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3400(1277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3400, (1: ), −0.648−0.760i)
|
Particular Values
L(21) |
≈ |
0.9173092896−1.988245359i |
L(21) |
≈ |
0.9173092896−1.988245359i |
L(1) |
≈ |
0.9632330396−0.5047186165i |
L(1) |
≈ |
0.9632330396−0.5047186165i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.156−0.987i)T |
| 7 | 1+(0.707−0.707i)T |
| 11 | 1+(−0.891+0.453i)T |
| 13 | 1+(0.951−0.309i)T |
| 19 | 1+(−0.587−0.809i)T |
| 23 | 1+(−0.453−0.891i)T |
| 29 | 1+(0.987−0.156i)T |
| 31 | 1+(−0.156+0.987i)T |
| 37 | 1+(0.453−0.891i)T |
| 41 | 1+(0.453−0.891i)T |
| 43 | 1+T |
| 47 | 1+(−0.587+0.809i)T |
| 53 | 1+(0.809+0.587i)T |
| 59 | 1+(0.951−0.309i)T |
| 61 | 1+(0.891−0.453i)T |
| 67 | 1+(0.587+0.809i)T |
| 71 | 1+(−0.987+0.156i)T |
| 73 | 1+(0.891−0.453i)T |
| 79 | 1+(0.156+0.987i)T |
| 83 | 1+(0.809−0.587i)T |
| 89 | 1+(0.309−0.951i)T |
| 97 | 1+(0.156+0.987i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.82579161232560488058442024141, −18.05834951385777826687800230901, −17.64057885134272345016651690632, −16.488308591496242392642214718687, −16.25626705081818186396786505073, −15.34069886073089228159406396304, −14.98980536232705935487400406261, −14.11377830917768812991582523671, −13.47369297897690882315025030893, −12.543243232855425922582373683180, −11.54296305104090101594315204693, −11.3299813745934167836248651438, −10.438307249726417629632136977397, −9.84625524135173418266799279213, −8.94527650215857565818957338286, −8.30836358887224861779954888364, −7.87122316406568858945352368535, −6.435592006227046393437803224974, −5.79298260604923946585546909343, −5.252948414278944528033447712534, −4.37745335213254065396205085286, −3.69354681294614431999994507064, −2.79236907827227045029281090367, −1.9677758708129226753929220967, −0.79649605895709794514826697877,
0.470232100345537002598883595546, 1.02905788891700511737135349244, 2.1082591767972318576143642864, 2.660697381980247607303828552414, 3.85140341875251793873374798786, 4.70282816776292030128467740219, 5.44767911864896240219312326710, 6.31264426283455351391555906870, 7.011483875936993268959033349639, 7.68926687837881708425674486439, 8.325530224088494070882610184602, 8.89826859987928880704078294833, 10.228270725250579740967918731180, 10.792419831700105161041889272579, 11.270789723730008016351963338687, 12.2895471466796596670431792512, 12.830020391362235650000441801901, 13.46383793740652931345687973322, 14.14580767977975884589192291544, 14.70431034157827550578784992988, 15.7771158828432341622144973161, 16.28019912587925630821950706955, 17.37011931262223276212133169798, 17.74856652732114360148166547503, 18.18035357850165333069165177027