Properties

Label 1-37-37.32-r1-0-0
Degree 11
Conductor 3737
Sign 0.695+0.718i-0.695 + 0.718i
Analytic cond. 3.976203.97620
Root an. cond. 3.976203.97620
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 + 0.766i)2-s + (−0.766 − 0.642i)3-s + (−0.173 + 0.984i)4-s + (0.342 + 0.939i)5-s i·6-s + (−0.939 + 0.342i)7-s + (−0.866 + 0.5i)8-s + (0.173 + 0.984i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (0.766 − 0.642i)12-s + (−0.984 − 0.173i)13-s + (−0.866 − 0.5i)14-s + (0.342 − 0.939i)15-s + (−0.939 − 0.342i)16-s + (0.984 − 0.173i)17-s + ⋯
L(s)  = 1  + (0.642 + 0.766i)2-s + (−0.766 − 0.642i)3-s + (−0.173 + 0.984i)4-s + (0.342 + 0.939i)5-s i·6-s + (−0.939 + 0.342i)7-s + (−0.866 + 0.5i)8-s + (0.173 + 0.984i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (0.766 − 0.642i)12-s + (−0.984 − 0.173i)13-s + (−0.866 − 0.5i)14-s + (0.342 − 0.939i)15-s + (−0.939 − 0.342i)16-s + (0.984 − 0.173i)17-s + ⋯

Functional equation

Λ(s)=(37s/2ΓR(s+1)L(s)=((0.695+0.718i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(37s/2ΓR(s+1)L(s)=((0.695+0.718i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 3737
Sign: 0.695+0.718i-0.695 + 0.718i
Analytic conductor: 3.976203.97620
Root analytic conductor: 3.976203.97620
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ37(32,)\chi_{37} (32, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 37, (1: ), 0.695+0.718i)(1,\ 37,\ (1:\ ),\ -0.695 + 0.718i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.4973328100+1.173038405i0.4973328100 + 1.173038405i
L(12)L(\frac12) \approx 0.4973328100+1.173038405i0.4973328100 + 1.173038405i
L(1)L(1) \approx 0.8573369617+0.6448789408i0.8573369617 + 0.6448789408i
L(1)L(1) \approx 0.8573369617+0.6448789408i0.8573369617 + 0.6448789408i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad37 1 1
good2 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
3 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
5 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
7 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
11 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
13 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
17 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
19 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
23 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
29 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
31 1+iT 1 + iT
41 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
43 1iT 1 - iT
47 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
53 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
59 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
61 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
67 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
71 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
73 1T 1 - T
79 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
83 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
89 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
97 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−34.779768897238362195745401152393, −33.141130796720894681784640560, −32.4754477695787857478531935404, −31.645710270851703304861242454988, −29.49010383523969917599856987575, −29.18065491317563596544848882138, −27.94084189415491466950432792180, −26.85266772650956766226493365451, −24.76766092722447209458336311291, −23.529173612981751669936295253196, −22.39239898393087000478635170767, −21.43790755882075503135163159915, −20.32617808402004149660913144403, −18.99620532982969522029345306175, −17.03266930304126799980671161746, −16.11475430587430754864588252694, −14.336559468531990111026907303, −12.79961850261177182518224138073, −11.84916127356179936583675045897, −10.21943722883182870260017919192, −9.32279751145666447259101020047, −6.21324931433848157046600453621, −5.01338752816848704794670409359, −3.52594744220396523294098996491, −0.77129842537470962456694517118, 2.8637688672396449529425135809, 5.201351003068377211836075124923, 6.57869448505227478144465551739, 7.34532620896352088547247513986, 9.77879515577809560033134352666, 11.77418782512903849358461507184, 12.82187775305803092446864519735, 14.1847325803349852656838067085, 15.549513996519827405703254116514, 17.02840057060060584305305478834, 17.97350435746563840096666908380, 19.37155133190820024105941721735, 21.72187031978059630662576465051, 22.54928393844034253463090994356, 23.28766660084352789096772594389, 24.916860315014906911277298127345, 25.592439426116743568273865987699, 27.10392961609987645734471979995, 28.88575782745006127693121028072, 29.95864681081444899778149673032, 30.85712468053556576457950532155, 32.39817642860280352731872162108, 33.56532043694587254637654932162, 34.52014430558602859627411824522, 35.27567303960655038813063733894

Graph of the ZZ-function along the critical line