L(s) = 1 | + (0.882 + 0.469i)2-s + (0.996 − 0.0871i)3-s + (0.559 + 0.829i)4-s + (0.920 + 0.390i)6-s + (0.0523 + 0.998i)7-s + (0.104 + 0.994i)8-s + (0.984 − 0.173i)9-s + (0.629 − 0.777i)11-s + (0.629 + 0.777i)12-s + (−0.920 − 0.390i)13-s + (−0.422 + 0.906i)14-s + (−0.374 + 0.927i)16-s + (−0.325 + 0.945i)17-s + (0.951 + 0.309i)18-s + (0.139 + 0.990i)21-s + (0.920 − 0.390i)22-s + ⋯ |
L(s) = 1 | + (0.882 + 0.469i)2-s + (0.996 − 0.0871i)3-s + (0.559 + 0.829i)4-s + (0.920 + 0.390i)6-s + (0.0523 + 0.998i)7-s + (0.104 + 0.994i)8-s + (0.984 − 0.173i)9-s + (0.629 − 0.777i)11-s + (0.629 + 0.777i)12-s + (−0.920 − 0.390i)13-s + (−0.422 + 0.906i)14-s + (−0.374 + 0.927i)16-s + (−0.325 + 0.945i)17-s + (0.951 + 0.309i)18-s + (0.139 + 0.990i)21-s + (0.920 − 0.390i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.260+0.965i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.260+0.965i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
−0.260+0.965i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1013,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), −0.260+0.965i)
|
Particular Values
L(21) |
≈ |
2.828881600+3.693619254i |
L(21) |
≈ |
2.828881600+3.693619254i |
L(1) |
≈ |
2.203737558+1.176274221i |
L(1) |
≈ |
2.203737558+1.176274221i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(0.882+0.469i)T |
| 3 | 1+(0.996−0.0871i)T |
| 7 | 1+(0.0523+0.998i)T |
| 11 | 1+(0.629−0.777i)T |
| 13 | 1+(−0.920−0.390i)T |
| 17 | 1+(−0.325+0.945i)T |
| 23 | 1+(0.788+0.615i)T |
| 29 | 1+(0.945−0.325i)T |
| 31 | 1+(−0.913−0.406i)T |
| 37 | 1+(−0.587+0.809i)T |
| 43 | 1+(0.0348+0.999i)T |
| 47 | 1+(0.601+0.798i)T |
| 53 | 1+(−0.981−0.190i)T |
| 59 | 1+(0.882+0.469i)T |
| 61 | 1+(−0.999−0.0348i)T |
| 67 | 1+(0.945−0.325i)T |
| 71 | 1+(−0.981+0.190i)T |
| 73 | 1+(0.766+0.642i)T |
| 79 | 1+(−0.0871−0.996i)T |
| 83 | 1+(0.866−0.5i)T |
| 89 | 1+(0.224+0.974i)T |
| 97 | 1+(0.999+0.0174i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.61063548613437268112921464368, −17.7207874167065659718704269855, −16.80728156235331033288353843208, −16.12448970210050599926934637269, −15.331077097159691031144294379727, −14.69532592513821430920436915910, −14.04352447972198459520941898411, −13.8708991204595075695013258719, −12.78088604183849251183581616466, −12.438663428407319737942255917856, −11.532546475255333581423191035686, −10.652614320634832360495816083560, −10.10507681469183135377966377158, −9.402835202281598467577426993603, −8.79502989031210447838920066872, −7.43212736150117224173004609622, −7.12288122999548313047643770630, −6.56740383219420743083090910829, −5.0521847561420326669286103787, −4.68384381463828439436482484212, −3.936644849293648097253829909317, −3.280143932381177800398202643936, −2.377169344144298311040267817577, −1.78566500385530571241369933778, −0.7750131774257239363442594989,
1.416693684396338244402503713711, 2.28016354691296330700648087395, 2.98111033520976406606545634165, 3.54152281801780208766535670539, 4.466260168603644060988359761182, 5.17834767529327241224462580105, 6.07928927280562985984574576543, 6.63268627466857726429382356095, 7.59154586075674766329608419814, 8.14994016261974197053864472099, 8.84662508720975813810269109621, 9.40434585336698917361559129044, 10.48693680997702537131150488156, 11.40701645956781104838765378778, 12.08937963216464415841463184282, 12.78997833023173180553943679841, 13.2347451869044853641578170466, 14.171395359311876821504303832233, 14.58011341404048752677639127609, 15.26517886632088476515964342201, 15.62579161614779873829683697550, 16.51798256819533926030183577542, 17.30259883532125278273683235034, 17.93506353870740978298470163375, 19.06832705258542090627061975832