Properties

Label 1-3895-3895.1013-r0-0-0
Degree 11
Conductor 38953895
Sign 0.260+0.965i-0.260 + 0.965i
Analytic cond. 18.088318.0883
Root an. cond. 18.088318.0883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.882 + 0.469i)2-s + (0.996 − 0.0871i)3-s + (0.559 + 0.829i)4-s + (0.920 + 0.390i)6-s + (0.0523 + 0.998i)7-s + (0.104 + 0.994i)8-s + (0.984 − 0.173i)9-s + (0.629 − 0.777i)11-s + (0.629 + 0.777i)12-s + (−0.920 − 0.390i)13-s + (−0.422 + 0.906i)14-s + (−0.374 + 0.927i)16-s + (−0.325 + 0.945i)17-s + (0.951 + 0.309i)18-s + (0.139 + 0.990i)21-s + (0.920 − 0.390i)22-s + ⋯
L(s)  = 1  + (0.882 + 0.469i)2-s + (0.996 − 0.0871i)3-s + (0.559 + 0.829i)4-s + (0.920 + 0.390i)6-s + (0.0523 + 0.998i)7-s + (0.104 + 0.994i)8-s + (0.984 − 0.173i)9-s + (0.629 − 0.777i)11-s + (0.629 + 0.777i)12-s + (−0.920 − 0.390i)13-s + (−0.422 + 0.906i)14-s + (−0.374 + 0.927i)16-s + (−0.325 + 0.945i)17-s + (0.951 + 0.309i)18-s + (0.139 + 0.990i)21-s + (0.920 − 0.390i)22-s + ⋯

Functional equation

Λ(s)=(3895s/2ΓR(s)L(s)=((0.260+0.965i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.260 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3895s/2ΓR(s)L(s)=((0.260+0.965i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.260 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 38953895    =    519415 \cdot 19 \cdot 41
Sign: 0.260+0.965i-0.260 + 0.965i
Analytic conductor: 18.088318.0883
Root analytic conductor: 18.088318.0883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3895(1013,)\chi_{3895} (1013, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3895, (0: ), 0.260+0.965i)(1,\ 3895,\ (0:\ ),\ -0.260 + 0.965i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.828881600+3.693619254i2.828881600 + 3.693619254i
L(12)L(\frac12) \approx 2.828881600+3.693619254i2.828881600 + 3.693619254i
L(1)L(1) \approx 2.203737558+1.176274221i2.203737558 + 1.176274221i
L(1)L(1) \approx 2.203737558+1.176274221i2.203737558 + 1.176274221i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
41 1 1
good2 1+(0.882+0.469i)T 1 + (0.882 + 0.469i)T
3 1+(0.9960.0871i)T 1 + (0.996 - 0.0871i)T
7 1+(0.0523+0.998i)T 1 + (0.0523 + 0.998i)T
11 1+(0.6290.777i)T 1 + (0.629 - 0.777i)T
13 1+(0.9200.390i)T 1 + (-0.920 - 0.390i)T
17 1+(0.325+0.945i)T 1 + (-0.325 + 0.945i)T
23 1+(0.788+0.615i)T 1 + (0.788 + 0.615i)T
29 1+(0.9450.325i)T 1 + (0.945 - 0.325i)T
31 1+(0.9130.406i)T 1 + (-0.913 - 0.406i)T
37 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
43 1+(0.0348+0.999i)T 1 + (0.0348 + 0.999i)T
47 1+(0.601+0.798i)T 1 + (0.601 + 0.798i)T
53 1+(0.9810.190i)T 1 + (-0.981 - 0.190i)T
59 1+(0.882+0.469i)T 1 + (0.882 + 0.469i)T
61 1+(0.9990.0348i)T 1 + (-0.999 - 0.0348i)T
67 1+(0.9450.325i)T 1 + (0.945 - 0.325i)T
71 1+(0.981+0.190i)T 1 + (-0.981 + 0.190i)T
73 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
79 1+(0.08710.996i)T 1 + (-0.0871 - 0.996i)T
83 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
89 1+(0.224+0.974i)T 1 + (0.224 + 0.974i)T
97 1+(0.999+0.0174i)T 1 + (0.999 + 0.0174i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.61063548613437268112921464368, −17.7207874167065659718704269855, −16.80728156235331033288353843208, −16.12448970210050599926934637269, −15.331077097159691031144294379727, −14.69532592513821430920436915910, −14.04352447972198459520941898411, −13.8708991204595075695013258719, −12.78088604183849251183581616466, −12.438663428407319737942255917856, −11.532546475255333581423191035686, −10.652614320634832360495816083560, −10.10507681469183135377966377158, −9.402835202281598467577426993603, −8.79502989031210447838920066872, −7.43212736150117224173004609622, −7.12288122999548313047643770630, −6.56740383219420743083090910829, −5.0521847561420326669286103787, −4.68384381463828439436482484212, −3.936644849293648097253829909317, −3.280143932381177800398202643936, −2.377169344144298311040267817577, −1.78566500385530571241369933778, −0.7750131774257239363442594989, 1.416693684396338244402503713711, 2.28016354691296330700648087395, 2.98111033520976406606545634165, 3.54152281801780208766535670539, 4.466260168603644060988359761182, 5.17834767529327241224462580105, 6.07928927280562985984574576543, 6.63268627466857726429382356095, 7.59154586075674766329608419814, 8.14994016261974197053864472099, 8.84662508720975813810269109621, 9.40434585336698917361559129044, 10.48693680997702537131150488156, 11.40701645956781104838765378778, 12.08937963216464415841463184282, 12.78997833023173180553943679841, 13.2347451869044853641578170466, 14.171395359311876821504303832233, 14.58011341404048752677639127609, 15.26517886632088476515964342201, 15.62579161614779873829683697550, 16.51798256819533926030183577542, 17.30259883532125278273683235034, 17.93506353870740978298470163375, 19.06832705258542090627061975832

Graph of the ZZ-function along the critical line