L(s) = 1 | + (−0.719 + 0.694i)2-s + (−0.996 + 0.0871i)3-s + (0.0348 − 0.999i)4-s + (0.656 − 0.754i)6-s + (0.933 − 0.358i)7-s + (0.669 + 0.743i)8-s + (0.984 − 0.173i)9-s + (−0.0523 + 0.998i)11-s + (0.0523 + 0.998i)12-s + (0.656 − 0.754i)13-s + (−0.422 + 0.906i)14-s + (−0.997 − 0.0697i)16-s + (0.292 + 0.956i)17-s + (−0.587 + 0.809i)18-s + (−0.898 + 0.438i)21-s + (−0.656 − 0.754i)22-s + ⋯ |
L(s) = 1 | + (−0.719 + 0.694i)2-s + (−0.996 + 0.0871i)3-s + (0.0348 − 0.999i)4-s + (0.656 − 0.754i)6-s + (0.933 − 0.358i)7-s + (0.669 + 0.743i)8-s + (0.984 − 0.173i)9-s + (−0.0523 + 0.998i)11-s + (0.0523 + 0.998i)12-s + (0.656 − 0.754i)13-s + (−0.422 + 0.906i)14-s + (−0.997 − 0.0697i)16-s + (0.292 + 0.956i)17-s + (−0.587 + 0.809i)18-s + (−0.898 + 0.438i)21-s + (−0.656 − 0.754i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.836−0.547i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.836−0.547i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
0.836−0.547i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1032,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), 0.836−0.547i)
|
Particular Values
L(21) |
≈ |
0.6550574270−0.1952804134i |
L(21) |
≈ |
0.6550574270−0.1952804134i |
L(1) |
≈ |
0.5919052312+0.1240889783i |
L(1) |
≈ |
0.5919052312+0.1240889783i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.719+0.694i)T |
| 3 | 1+(−0.996+0.0871i)T |
| 7 | 1+(0.933−0.358i)T |
| 11 | 1+(−0.0523+0.998i)T |
| 13 | 1+(0.656−0.754i)T |
| 17 | 1+(0.292+0.956i)T |
| 23 | 1+(−0.829+0.559i)T |
| 29 | 1+(−0.956−0.292i)T |
| 31 | 1+(0.978−0.207i)T |
| 37 | 1+(−0.951+0.309i)T |
| 43 | 1+(−0.961−0.275i)T |
| 47 | 1+(−0.945+0.325i)T |
| 53 | 1+(−0.681−0.731i)T |
| 59 | 1+(0.719−0.694i)T |
| 61 | 1+(−0.275−0.961i)T |
| 67 | 1+(0.956+0.292i)T |
| 71 | 1+(0.681−0.731i)T |
| 73 | 1+(−0.766−0.642i)T |
| 79 | 1+(−0.0871−0.996i)T |
| 83 | 1+(−0.866+0.5i)T |
| 89 | 1+(−0.857+0.515i)T |
| 97 | 1+(0.798+0.601i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.517781186197265740572075468171, −18.13532081275190835064676515408, −17.31808699609111718404430659594, −16.70239937249399072704663931037, −16.12341782041481375363968569619, −15.59208759562601942236421234314, −14.29323889926806786322168086180, −13.69780854093741270657394628943, −12.897100716349000839186249490811, −12.019394015532352401715001328234, −11.54980845898185502430955721937, −11.1967633585235585138277689945, −10.42978500253160028383188011775, −9.72886837610833536456178899261, −8.78809200739901576508289821692, −8.30691740854009435970268947982, −7.44342348446241168852299852978, −6.697588788147994438063028737232, −5.864376395310550444347076858, −5.03754658597808105950270809905, −4.28003695563977173706302216614, −3.45742386047376603978480535556, −2.38508714902975896663184001829, −1.54924652823204708456340886989, −0.8803830844360693643337656506,
0.35978288918396890471769427266, 1.590983138394924204172503310858, 1.784804947171300229538830314293, 3.60961406229573334968395916617, 4.48758312991710717207859658114, 5.135382407085877100205816983914, 5.780914936627730958365238260174, 6.502539395939642626671195344758, 7.24139093369921669941254144121, 7.99040114866476245061571004590, 8.3995413165380298989273361083, 9.76474140678347394331491100423, 9.9994831897365342019182098949, 10.83007993031195171288524733086, 11.32200108148760007879599069994, 12.12885668256879224949790922242, 13.00327273899914074496319999198, 13.76492672093698307921026484642, 14.69732175713840827660713042251, 15.28125468879018025786831858927, 15.74201888747314415741863815744, 16.62498153748802532123444119733, 17.32568642049802540450245026658, 17.5892175168341526781069853643, 18.168462777703290295201807872592