L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.996 + 0.0871i)3-s + (0.939 + 0.342i)4-s + (−0.996 − 0.0871i)6-s + (−0.965 − 0.258i)7-s + (0.866 + 0.5i)8-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.965 − 0.258i)12-s + (−0.0871 + 0.996i)13-s + (−0.906 − 0.422i)14-s + (0.766 + 0.642i)16-s + (0.819 − 0.573i)17-s + 18-s + (0.984 + 0.173i)21-s + (0.0871 + 0.996i)22-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.996 + 0.0871i)3-s + (0.939 + 0.342i)4-s + (−0.996 − 0.0871i)6-s + (−0.965 − 0.258i)7-s + (0.866 + 0.5i)8-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.965 − 0.258i)12-s + (−0.0871 + 0.996i)13-s + (−0.906 − 0.422i)14-s + (0.766 + 0.642i)16-s + (0.819 − 0.573i)17-s + 18-s + (0.984 + 0.173i)21-s + (0.0871 + 0.996i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.329+0.943i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.329+0.943i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
−0.329+0.943i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1039,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), −0.329+0.943i)
|
Particular Values
L(21) |
≈ |
1.129860160+1.591832876i |
L(21) |
≈ |
1.129860160+1.591832876i |
L(1) |
≈ |
1.274112556+0.4397049392i |
L(1) |
≈ |
1.274112556+0.4397049392i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(0.984+0.173i)T |
| 3 | 1+(−0.996+0.0871i)T |
| 7 | 1+(−0.965−0.258i)T |
| 11 | 1+(0.258+0.965i)T |
| 13 | 1+(−0.0871+0.996i)T |
| 17 | 1+(0.819−0.573i)T |
| 23 | 1+(−0.939−0.342i)T |
| 29 | 1+(0.819+0.573i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1+T |
| 43 | 1+(0.342+0.939i)T |
| 47 | 1+(−0.573+0.819i)T |
| 53 | 1+(−0.906+0.422i)T |
| 59 | 1+(−0.173+0.984i)T |
| 61 | 1+(0.342−0.939i)T |
| 67 | 1+(0.573−0.819i)T |
| 71 | 1+(−0.422+0.906i)T |
| 73 | 1+(0.642−0.766i)T |
| 79 | 1+(−0.996+0.0871i)T |
| 83 | 1+(0.5+0.866i)T |
| 89 | 1+(0.0871−0.996i)T |
| 97 | 1+(0.819−0.573i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.42348489891695299561180919785, −17.52126648086949244728931197688, −16.764109212995452555619314480729, −16.11967224637837067874884871509, −15.77913842348929675194461362649, −14.95225705554681272779637866409, −14.10028302237421251879806616490, −13.333472310713104944074654272255, −12.78033357600207376205338911218, −12.204037021766445784960169256716, −11.647995531398399164489695900506, −10.8312187926538295614400023015, −10.19979546509961501111771399059, −9.719314468592042714840751023554, −8.38759704296688095961894172147, −7.57300632144623769606570005509, −6.69442644745564647885685976493, −6.03528539060961747692726347, −5.696334013757921730888027716052, −4.96303545072407511910163125021, −3.85086558571430011959686726279, −3.41823070518766458060504245754, −2.4890060931416627449288337452, −1.3833349963355162231896546630, −0.48021219871676943964445674292,
1.102276211715809681368935987272, 2.052217487759799533794876356312, 3.0185657633624030445516091, 4.00319913205991818277408507920, 4.4485013795247377008583296431, 5.18328210047180560575826005716, 6.22829645716331946939349355677, 6.40147847042562620505497549104, 7.27287369736384883754028081235, 7.790261078181931131946748950088, 9.335289861796386178660982509057, 9.83283360286081857886165578228, 10.55721804266191219152108620347, 11.45093665073677213982255238554, 11.94110305221007838902260335182, 12.64009671772186712047058087951, 12.99044236190694885952135967487, 14.071186890372092711322035205904, 14.49007909743139013232049290017, 15.51321740469931754367928687535, 16.03693596402500711173555041820, 16.611168934025440510050060028540, 17.02094028570522519804956417902, 17.97072938991197842085553306336, 18.689465710803662630795509128451