L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.996 + 0.0871i)3-s + (0.939 + 0.342i)4-s + (−0.996 − 0.0871i)6-s + (−0.965 − 0.258i)7-s + (0.866 + 0.5i)8-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.965 − 0.258i)12-s + (−0.0871 + 0.996i)13-s + (−0.906 − 0.422i)14-s + (0.766 + 0.642i)16-s + (0.819 − 0.573i)17-s + 18-s + (0.984 + 0.173i)21-s + (0.0871 + 0.996i)22-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.996 + 0.0871i)3-s + (0.939 + 0.342i)4-s + (−0.996 − 0.0871i)6-s + (−0.965 − 0.258i)7-s + (0.866 + 0.5i)8-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.965 − 0.258i)12-s + (−0.0871 + 0.996i)13-s + (−0.906 − 0.422i)14-s + (0.766 + 0.642i)16-s + (0.819 − 0.573i)17-s + 18-s + (0.984 + 0.173i)21-s + (0.0871 + 0.996i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.329 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.329 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.129860160 + 1.591832876i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.129860160 + 1.591832876i\) |
\(L(1)\) |
\(\approx\) |
\(1.274112556 + 0.4397049392i\) |
\(L(1)\) |
\(\approx\) |
\(1.274112556 + 0.4397049392i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.984 + 0.173i)T \) |
| 3 | \( 1 + (-0.996 + 0.0871i)T \) |
| 7 | \( 1 + (-0.965 - 0.258i)T \) |
| 11 | \( 1 + (0.258 + 0.965i)T \) |
| 13 | \( 1 + (-0.0871 + 0.996i)T \) |
| 17 | \( 1 + (0.819 - 0.573i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (0.819 + 0.573i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + T \) |
| 43 | \( 1 + (0.342 + 0.939i)T \) |
| 47 | \( 1 + (-0.573 + 0.819i)T \) |
| 53 | \( 1 + (-0.906 + 0.422i)T \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.342 - 0.939i)T \) |
| 67 | \( 1 + (0.573 - 0.819i)T \) |
| 71 | \( 1 + (-0.422 + 0.906i)T \) |
| 73 | \( 1 + (0.642 - 0.766i)T \) |
| 79 | \( 1 + (-0.996 + 0.0871i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (0.0871 - 0.996i)T \) |
| 97 | \( 1 + (0.819 - 0.573i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.42348489891695299561180919785, −17.52126648086949244728931197688, −16.764109212995452555619314480729, −16.11967224637837067874884871509, −15.77913842348929675194461362649, −14.95225705554681272779637866409, −14.10028302237421251879806616490, −13.333472310713104944074654272255, −12.78033357600207376205338911218, −12.204037021766445784960169256716, −11.647995531398399164489695900506, −10.8312187926538295614400023015, −10.19979546509961501111771399059, −9.719314468592042714840751023554, −8.38759704296688095961894172147, −7.57300632144623769606570005509, −6.69442644745564647885685976493, −6.03528539060961747692726347, −5.696334013757921730888027716052, −4.96303545072407511910163125021, −3.85086558571430011959686726279, −3.41823070518766458060504245754, −2.4890060931416627449288337452, −1.3833349963355162231896546630, −0.48021219871676943964445674292,
1.102276211715809681368935987272, 2.052217487759799533794876356312, 3.0185657633624030445516091, 4.00319913205991818277408507920, 4.4485013795247377008583296431, 5.18328210047180560575826005716, 6.22829645716331946939349355677, 6.40147847042562620505497549104, 7.27287369736384883754028081235, 7.790261078181931131946748950088, 9.335289861796386178660982509057, 9.83283360286081857886165578228, 10.55721804266191219152108620347, 11.45093665073677213982255238554, 11.94110305221007838902260335182, 12.64009671772186712047058087951, 12.99044236190694885952135967487, 14.071186890372092711322035205904, 14.49007909743139013232049290017, 15.51321740469931754367928687535, 16.03693596402500711173555041820, 16.611168934025440510050060028540, 17.02094028570522519804956417902, 17.97072938991197842085553306336, 18.689465710803662630795509128451