L(s) = 1 | + (−0.0697 + 0.997i)2-s + (0.906 + 0.422i)3-s + (−0.990 − 0.139i)4-s + (−0.484 + 0.874i)6-s + (−0.777 + 0.629i)7-s + (0.207 − 0.978i)8-s + (0.642 + 0.766i)9-s + (−0.544 − 0.838i)11-s + (−0.838 − 0.544i)12-s + (−0.874 − 0.484i)13-s + (−0.573 − 0.819i)14-s + (0.961 + 0.275i)16-s + (0.390 + 0.920i)17-s + (−0.809 + 0.587i)18-s + (−0.970 + 0.241i)21-s + (0.874 − 0.484i)22-s + ⋯ |
L(s) = 1 | + (−0.0697 + 0.997i)2-s + (0.906 + 0.422i)3-s + (−0.990 − 0.139i)4-s + (−0.484 + 0.874i)6-s + (−0.777 + 0.629i)7-s + (0.207 − 0.978i)8-s + (0.642 + 0.766i)9-s + (−0.544 − 0.838i)11-s + (−0.838 − 0.544i)12-s + (−0.874 − 0.484i)13-s + (−0.573 − 0.819i)14-s + (0.961 + 0.275i)16-s + (0.390 + 0.920i)17-s + (−0.809 + 0.587i)18-s + (−0.970 + 0.241i)21-s + (0.874 − 0.484i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.205 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.205 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9957637965 + 1.226308930i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9957637965 + 1.226308930i\) |
\(L(1)\) |
\(\approx\) |
\(0.8841903630 + 0.6308122644i\) |
\(L(1)\) |
\(\approx\) |
\(0.8841903630 + 0.6308122644i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.0697 + 0.997i)T \) |
| 3 | \( 1 + (0.906 + 0.422i)T \) |
| 7 | \( 1 + (-0.777 + 0.629i)T \) |
| 11 | \( 1 + (-0.544 - 0.838i)T \) |
| 13 | \( 1 + (-0.874 - 0.484i)T \) |
| 17 | \( 1 + (0.390 + 0.920i)T \) |
| 23 | \( 1 + (-0.719 - 0.694i)T \) |
| 29 | \( 1 + (0.390 - 0.920i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 + (-0.898 + 0.438i)T \) |
| 47 | \( 1 + (0.515 + 0.857i)T \) |
| 53 | \( 1 + (0.601 + 0.798i)T \) |
| 59 | \( 1 + (0.997 + 0.0697i)T \) |
| 61 | \( 1 + (-0.898 - 0.438i)T \) |
| 67 | \( 1 + (0.920 + 0.390i)T \) |
| 71 | \( 1 + (0.798 + 0.601i)T \) |
| 73 | \( 1 + (-0.342 - 0.939i)T \) |
| 79 | \( 1 + (0.906 + 0.422i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.190 + 0.981i)T \) |
| 97 | \( 1 + (0.224 - 0.974i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.48427706466980854789970994056, −17.96525309719182200468202080209, −17.19095794684065170735568738296, −16.36443625310158260893089216550, −15.50413926830434648640309638173, −14.668840492288799479370609138572, −13.97909839218374460182371378358, −13.517181024992393270619842092177, −12.85736305728438468378696235806, −12.141576569188517521654922798901, −11.762291969343161034068712077760, −10.42249671831855543374210358932, −9.95829461345470069937536128497, −9.54432822045062755251443056343, −8.72940954748683329159126662119, −7.878500188049161560471801769246, −7.2322297354162650695726878884, −6.64150434164101769655668988350, −5.232410251590948756614569931047, −4.579395984283221605907197096532, −3.69669450973158595094113243905, −3.07348070857568819031859567749, −2.37467913005052109832140659628, −1.63232013252839764893108432008, −0.62157418713710440707494803797,
0.67116366721676320829069972465, 2.23267461303179010934279706231, 2.89964648698624986506758470167, 3.751425590520581268615692478271, 4.44429326104795569260189854026, 5.41623487893872265689209045110, 5.96348226096952274830515621419, 6.74939199225450621456063764959, 7.871839881174970389579017200489, 8.07488687256134113308571194189, 8.83425514793606665979501875792, 9.65666998115671741376526263322, 10.0356773246007466660298303741, 10.802751302352988982089378042263, 12.202985684042071969152901586079, 12.77511401163576602153114477389, 13.454099416319510991334304322243, 14.06576970125320546233530875011, 14.858092025408436600786566537209, 15.29637341819808252423166164042, 15.91340239694681700120539489531, 16.50256445381535255610098917170, 17.12899052225762732124045839302, 18.12678406521377209972919918842, 18.76238348633286920706346098559