Properties

Label 1-3895-3895.1104-r0-0-0
Degree 11
Conductor 38953895
Sign 0.127+0.991i-0.127 + 0.991i
Analytic cond. 18.088318.0883
Root an. cond. 18.088318.0883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.342 + 0.939i)2-s + (−0.573 + 0.819i)3-s + (−0.766 − 0.642i)4-s + (−0.573 − 0.819i)6-s + (0.965 − 0.258i)7-s + (0.866 − 0.5i)8-s + (−0.342 − 0.939i)9-s + (−0.258 + 0.965i)11-s + (0.965 − 0.258i)12-s + (0.819 − 0.573i)13-s + (−0.0871 + 0.996i)14-s + (0.173 + 0.984i)16-s + (0.906 − 0.422i)17-s + 18-s + (−0.342 + 0.939i)21-s + (−0.819 − 0.573i)22-s + ⋯
L(s)  = 1  + (−0.342 + 0.939i)2-s + (−0.573 + 0.819i)3-s + (−0.766 − 0.642i)4-s + (−0.573 − 0.819i)6-s + (0.965 − 0.258i)7-s + (0.866 − 0.5i)8-s + (−0.342 − 0.939i)9-s + (−0.258 + 0.965i)11-s + (0.965 − 0.258i)12-s + (0.819 − 0.573i)13-s + (−0.0871 + 0.996i)14-s + (0.173 + 0.984i)16-s + (0.906 − 0.422i)17-s + 18-s + (−0.342 + 0.939i)21-s + (−0.819 − 0.573i)22-s + ⋯

Functional equation

Λ(s)=(3895s/2ΓR(s)L(s)=((0.127+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3895s/2ΓR(s)L(s)=((0.127+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 38953895    =    519415 \cdot 19 \cdot 41
Sign: 0.127+0.991i-0.127 + 0.991i
Analytic conductor: 18.088318.0883
Root analytic conductor: 18.088318.0883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3895(1104,)\chi_{3895} (1104, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3895, (0: ), 0.127+0.991i)(1,\ 3895,\ (0:\ ),\ -0.127 + 0.991i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.9446443880+1.073502777i0.9446443880 + 1.073502777i
L(12)L(\frac12) \approx 0.9446443880+1.073502777i0.9446443880 + 1.073502777i
L(1)L(1) \approx 0.7309744864+0.5195160700i0.7309744864 + 0.5195160700i
L(1)L(1) \approx 0.7309744864+0.5195160700i0.7309744864 + 0.5195160700i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
41 1 1
good2 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
3 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
7 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
11 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
13 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
17 1+(0.9060.422i)T 1 + (0.906 - 0.422i)T
23 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
29 1+(0.906+0.422i)T 1 + (0.906 + 0.422i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1+T 1 + T
43 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
47 1+(0.4220.906i)T 1 + (0.422 - 0.906i)T
53 1+(0.08710.996i)T 1 + (-0.0871 - 0.996i)T
59 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
61 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
67 1+(0.422+0.906i)T 1 + (-0.422 + 0.906i)T
71 1+(0.9960.0871i)T 1 + (-0.996 - 0.0871i)T
73 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
79 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
83 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
89 1+(0.819+0.573i)T 1 + (-0.819 + 0.573i)T
97 1+(0.9060.422i)T 1 + (0.906 - 0.422i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.56776850776520816408381207072, −17.861691498876344370218064894587, −17.14258515863112232872987990177, −16.65062125499055599412088903271, −15.90011415735848500738546437794, −14.587101082657434307601536646129, −14.073470855034313711252493810017, −13.334340508214676818733635086054, −12.8035614057581927325542933801, −11.8606686720111336372035225915, −11.59405931615650263680532046640, −10.78169326756230483791977737691, −10.4832206282855192995020888196, −9.17270300526112144968913414396, −8.56502728462775306522908923691, −7.96442373946593924731102120796, −7.37923000111453738598575013917, −6.168429529689694972748046220761, −5.630470280950399879895914656972, −4.728898181495080637207488720154, −3.97743912037292396497311996887, −2.87918436927242420142864665650, −2.225856317279043212539513227291, −1.25621894962851756373535923051, −0.81749971160555952941474199401, 0.808141853015280256810744204334, 1.49987051701935414155327158138, 3.028425439773584372852057391525, 4.00614545966310265309167155389, 4.68797652436323483728688593109, 5.31187962576355995218222788257, 5.77353150711191843837651663435, 6.86714615327209640042474431838, 7.40892807507863876830123215426, 8.281558210874579375568921393130, 8.86989865327686136014751970438, 9.78939027835855986294149556457, 10.25192061293447946263266436098, 10.94969704535485239236131465847, 11.634207439811977649328459902329, 12.605721440861108537147514367920, 13.36241091480453206164497460118, 14.43128967196463685252811088569, 14.65151782328397198776980326319, 15.45764349572796045983406318788, 16.003927323620580283415984735736, 16.6292869330555580138911881655, 17.37677142009691207131979379858, 17.97514738664905977047941784940, 18.13907423974083039324331645841

Graph of the ZZ-function along the critical line