L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.573 + 0.819i)3-s + (−0.766 − 0.642i)4-s + (−0.573 − 0.819i)6-s + (0.965 − 0.258i)7-s + (0.866 − 0.5i)8-s + (−0.342 − 0.939i)9-s + (−0.258 + 0.965i)11-s + (0.965 − 0.258i)12-s + (0.819 − 0.573i)13-s + (−0.0871 + 0.996i)14-s + (0.173 + 0.984i)16-s + (0.906 − 0.422i)17-s + 18-s + (−0.342 + 0.939i)21-s + (−0.819 − 0.573i)22-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.573 + 0.819i)3-s + (−0.766 − 0.642i)4-s + (−0.573 − 0.819i)6-s + (0.965 − 0.258i)7-s + (0.866 − 0.5i)8-s + (−0.342 − 0.939i)9-s + (−0.258 + 0.965i)11-s + (0.965 − 0.258i)12-s + (0.819 − 0.573i)13-s + (−0.0871 + 0.996i)14-s + (0.173 + 0.984i)16-s + (0.906 − 0.422i)17-s + 18-s + (−0.342 + 0.939i)21-s + (−0.819 − 0.573i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.127+0.991i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.127+0.991i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
−0.127+0.991i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1104,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), −0.127+0.991i)
|
Particular Values
L(21) |
≈ |
0.9446443880+1.073502777i |
L(21) |
≈ |
0.9446443880+1.073502777i |
L(1) |
≈ |
0.7309744864+0.5195160700i |
L(1) |
≈ |
0.7309744864+0.5195160700i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.342+0.939i)T |
| 3 | 1+(−0.573+0.819i)T |
| 7 | 1+(0.965−0.258i)T |
| 11 | 1+(−0.258+0.965i)T |
| 13 | 1+(0.819−0.573i)T |
| 17 | 1+(0.906−0.422i)T |
| 23 | 1+(0.766+0.642i)T |
| 29 | 1+(0.906+0.422i)T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1+T |
| 43 | 1+(0.642+0.766i)T |
| 47 | 1+(0.422−0.906i)T |
| 53 | 1+(−0.0871−0.996i)T |
| 59 | 1+(0.939+0.342i)T |
| 61 | 1+(0.642−0.766i)T |
| 67 | 1+(−0.422+0.906i)T |
| 71 | 1+(−0.996−0.0871i)T |
| 73 | 1+(−0.984+0.173i)T |
| 79 | 1+(−0.573+0.819i)T |
| 83 | 1+(0.5−0.866i)T |
| 89 | 1+(−0.819+0.573i)T |
| 97 | 1+(0.906−0.422i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.56776850776520816408381207072, −17.861691498876344370218064894587, −17.14258515863112232872987990177, −16.65062125499055599412088903271, −15.90011415735848500738546437794, −14.587101082657434307601536646129, −14.073470855034313711252493810017, −13.334340508214676818733635086054, −12.8035614057581927325542933801, −11.8606686720111336372035225915, −11.59405931615650263680532046640, −10.78169326756230483791977737691, −10.4832206282855192995020888196, −9.17270300526112144968913414396, −8.56502728462775306522908923691, −7.96442373946593924731102120796, −7.37923000111453738598575013917, −6.168429529689694972748046220761, −5.630470280950399879895914656972, −4.728898181495080637207488720154, −3.97743912037292396497311996887, −2.87918436927242420142864665650, −2.225856317279043212539513227291, −1.25621894962851756373535923051, −0.81749971160555952941474199401,
0.808141853015280256810744204334, 1.49987051701935414155327158138, 3.028425439773584372852057391525, 4.00614545966310265309167155389, 4.68797652436323483728688593109, 5.31187962576355995218222788257, 5.77353150711191843837651663435, 6.86714615327209640042474431838, 7.40892807507863876830123215426, 8.281558210874579375568921393130, 8.86989865327686136014751970438, 9.78939027835855986294149556457, 10.25192061293447946263266436098, 10.94969704535485239236131465847, 11.634207439811977649328459902329, 12.605721440861108537147514367920, 13.36241091480453206164497460118, 14.43128967196463685252811088569, 14.65151782328397198776980326319, 15.45764349572796045983406318788, 16.003927323620580283415984735736, 16.6292869330555580138911881655, 17.37677142009691207131979379858, 17.97514738664905977047941784940, 18.13907423974083039324331645841