L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.573 + 0.819i)3-s + (−0.766 − 0.642i)4-s + (−0.573 − 0.819i)6-s + (0.965 − 0.258i)7-s + (0.866 − 0.5i)8-s + (−0.342 − 0.939i)9-s + (−0.258 + 0.965i)11-s + (0.965 − 0.258i)12-s + (0.819 − 0.573i)13-s + (−0.0871 + 0.996i)14-s + (0.173 + 0.984i)16-s + (0.906 − 0.422i)17-s + 18-s + (−0.342 + 0.939i)21-s + (−0.819 − 0.573i)22-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.573 + 0.819i)3-s + (−0.766 − 0.642i)4-s + (−0.573 − 0.819i)6-s + (0.965 − 0.258i)7-s + (0.866 − 0.5i)8-s + (−0.342 − 0.939i)9-s + (−0.258 + 0.965i)11-s + (0.965 − 0.258i)12-s + (0.819 − 0.573i)13-s + (−0.0871 + 0.996i)14-s + (0.173 + 0.984i)16-s + (0.906 − 0.422i)17-s + 18-s + (−0.342 + 0.939i)21-s + (−0.819 − 0.573i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9446443880 + 1.073502777i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9446443880 + 1.073502777i\) |
\(L(1)\) |
\(\approx\) |
\(0.7309744864 + 0.5195160700i\) |
\(L(1)\) |
\(\approx\) |
\(0.7309744864 + 0.5195160700i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.342 + 0.939i)T \) |
| 3 | \( 1 + (-0.573 + 0.819i)T \) |
| 7 | \( 1 + (0.965 - 0.258i)T \) |
| 11 | \( 1 + (-0.258 + 0.965i)T \) |
| 13 | \( 1 + (0.819 - 0.573i)T \) |
| 17 | \( 1 + (0.906 - 0.422i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (0.906 + 0.422i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 43 | \( 1 + (0.642 + 0.766i)T \) |
| 47 | \( 1 + (0.422 - 0.906i)T \) |
| 53 | \( 1 + (-0.0871 - 0.996i)T \) |
| 59 | \( 1 + (0.939 + 0.342i)T \) |
| 61 | \( 1 + (0.642 - 0.766i)T \) |
| 67 | \( 1 + (-0.422 + 0.906i)T \) |
| 71 | \( 1 + (-0.996 - 0.0871i)T \) |
| 73 | \( 1 + (-0.984 + 0.173i)T \) |
| 79 | \( 1 + (-0.573 + 0.819i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.819 + 0.573i)T \) |
| 97 | \( 1 + (0.906 - 0.422i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.56776850776520816408381207072, −17.861691498876344370218064894587, −17.14258515863112232872987990177, −16.65062125499055599412088903271, −15.90011415735848500738546437794, −14.587101082657434307601536646129, −14.073470855034313711252493810017, −13.334340508214676818733635086054, −12.8035614057581927325542933801, −11.8606686720111336372035225915, −11.59405931615650263680532046640, −10.78169326756230483791977737691, −10.4832206282855192995020888196, −9.17270300526112144968913414396, −8.56502728462775306522908923691, −7.96442373946593924731102120796, −7.37923000111453738598575013917, −6.168429529689694972748046220761, −5.630470280950399879895914656972, −4.728898181495080637207488720154, −3.97743912037292396497311996887, −2.87918436927242420142864665650, −2.225856317279043212539513227291, −1.25621894962851756373535923051, −0.81749971160555952941474199401,
0.808141853015280256810744204334, 1.49987051701935414155327158138, 3.028425439773584372852057391525, 4.00614545966310265309167155389, 4.68797652436323483728688593109, 5.31187962576355995218222788257, 5.77353150711191843837651663435, 6.86714615327209640042474431838, 7.40892807507863876830123215426, 8.281558210874579375568921393130, 8.86989865327686136014751970438, 9.78939027835855986294149556457, 10.25192061293447946263266436098, 10.94969704535485239236131465847, 11.634207439811977649328459902329, 12.605721440861108537147514367920, 13.36241091480453206164497460118, 14.43128967196463685252811088569, 14.65151782328397198776980326319, 15.45764349572796045983406318788, 16.003927323620580283415984735736, 16.6292869330555580138911881655, 17.37677142009691207131979379858, 17.97514738664905977047941784940, 18.13907423974083039324331645841