L(s) = 1 | + (−0.999 + 0.0348i)2-s + (−0.173 + 0.984i)3-s + (0.997 − 0.0697i)4-s + (0.139 − 0.990i)6-s + (−0.669 + 0.743i)7-s + (−0.994 + 0.104i)8-s + (−0.939 − 0.342i)9-s + (0.994 − 0.104i)11-s + (−0.104 + 0.994i)12-s + (−0.990 − 0.139i)13-s + (0.642 − 0.766i)14-s + (0.990 − 0.139i)16-s + (0.559 − 0.829i)17-s + (0.951 + 0.309i)18-s + (−0.615 − 0.788i)21-s + (−0.990 + 0.139i)22-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0348i)2-s + (−0.173 + 0.984i)3-s + (0.997 − 0.0697i)4-s + (0.139 − 0.990i)6-s + (−0.669 + 0.743i)7-s + (−0.994 + 0.104i)8-s + (−0.939 − 0.342i)9-s + (0.994 − 0.104i)11-s + (−0.104 + 0.994i)12-s + (−0.990 − 0.139i)13-s + (0.642 − 0.766i)14-s + (0.990 − 0.139i)16-s + (0.559 − 0.829i)17-s + (0.951 + 0.309i)18-s + (−0.615 − 0.788i)21-s + (−0.990 + 0.139i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.882 - 0.469i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.882 - 0.469i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3331840046 - 0.08307650940i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3331840046 - 0.08307650940i\) |
\(L(1)\) |
\(\approx\) |
\(0.4813751189 + 0.1827111585i\) |
\(L(1)\) |
\(\approx\) |
\(0.4813751189 + 0.1827111585i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.999 + 0.0348i)T \) |
| 3 | \( 1 + (-0.173 + 0.984i)T \) |
| 7 | \( 1 + (-0.669 + 0.743i)T \) |
| 11 | \( 1 + (0.994 - 0.104i)T \) |
| 13 | \( 1 + (-0.990 - 0.139i)T \) |
| 17 | \( 1 + (0.559 - 0.829i)T \) |
| 23 | \( 1 + (-0.927 + 0.374i)T \) |
| 29 | \( 1 + (-0.829 + 0.559i)T \) |
| 31 | \( 1 + (-0.913 - 0.406i)T \) |
| 37 | \( 1 + (-0.587 + 0.809i)T \) |
| 43 | \( 1 + (0.529 + 0.848i)T \) |
| 47 | \( 1 + (-0.615 + 0.788i)T \) |
| 53 | \( 1 + (0.997 - 0.0697i)T \) |
| 59 | \( 1 + (0.0348 + 0.999i)T \) |
| 61 | \( 1 + (-0.848 - 0.529i)T \) |
| 67 | \( 1 + (-0.559 - 0.829i)T \) |
| 71 | \( 1 + (-0.0697 + 0.997i)T \) |
| 73 | \( 1 + (0.984 + 0.173i)T \) |
| 79 | \( 1 + (0.984 + 0.173i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (-0.469 - 0.882i)T \) |
| 97 | \( 1 + (-0.961 - 0.275i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.63734203904475401923206247105, −17.85474163842472535263805370318, −17.24636788566784302142183667769, −16.71989710995136131505813271255, −16.37432397378044117063171021011, −15.16292825510392736607060350521, −14.48739961156515456037737257422, −13.8544081108912175675919930406, −12.825153315327616551035469707600, −12.294357485925285119614793057910, −11.80396422287057401407333929706, −10.876836007634071260573451998094, −10.26739812047585084839414530780, −9.50671879974317387494001863343, −8.84754001279226516559695651932, −7.96078634165682135453872476974, −7.33539322129259013093796505811, −6.85650817635135623300429704290, −6.16114198462811791175326500167, −5.470135760511311663912986830995, −4.0097184576113295180772330748, −3.34522224134044227563686723603, −2.21003736435635871403508884153, −1.6978592503376652024637666804, −0.700357705144076132764314019602,
0.19448682840761018319693935661, 1.52789708365689646734435946439, 2.58585529627990326816864723406, 3.19534582288748022853196520965, 4.0053052977559661111591961582, 5.19196420857499214921584708095, 5.75462289503290195286222560216, 6.499814351764884522390592834182, 7.311455492304168595823843398601, 8.167228366956848637278759232958, 9.06134926986536424239588696197, 9.50121273551572345943580337393, 9.8399791488595180504859704957, 10.733884722814648380117486479631, 11.56464113025738178174801253547, 11.978270300671408767030754847600, 12.64438661507643441266989722268, 14.00535262764910926311312397083, 14.71145751938874441803484120572, 15.21191224646077765942076798317, 15.94600384244654591637138561268, 16.58910399819682878887425085864, 16.87998383301943133714448291137, 17.79622208995664544559349770316, 18.39124258440616878482310485905