L(s) = 1 | + (−0.406 − 0.913i)2-s + (0.965 − 0.258i)3-s + (−0.669 + 0.743i)4-s + (−0.629 − 0.777i)6-s + (−0.987 − 0.156i)7-s + (0.951 + 0.309i)8-s + (0.866 − 0.5i)9-s + (0.891 − 0.453i)11-s + (−0.453 + 0.891i)12-s + (0.777 − 0.629i)13-s + (0.258 + 0.965i)14-s + (−0.104 − 0.994i)16-s + (0.998 + 0.0523i)17-s + (−0.809 − 0.587i)18-s + (−0.994 + 0.104i)21-s + (−0.777 − 0.629i)22-s + ⋯ |
L(s) = 1 | + (−0.406 − 0.913i)2-s + (0.965 − 0.258i)3-s + (−0.669 + 0.743i)4-s + (−0.629 − 0.777i)6-s + (−0.987 − 0.156i)7-s + (0.951 + 0.309i)8-s + (0.866 − 0.5i)9-s + (0.891 − 0.453i)11-s + (−0.453 + 0.891i)12-s + (0.777 − 0.629i)13-s + (0.258 + 0.965i)14-s + (−0.104 − 0.994i)16-s + (0.998 + 0.0523i)17-s + (−0.809 − 0.587i)18-s + (−0.994 + 0.104i)21-s + (−0.777 − 0.629i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.179−0.983i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.179−0.983i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
0.179−0.983i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1114,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), 0.179−0.983i)
|
Particular Values
L(21) |
≈ |
1.682340011−1.403115613i |
L(21) |
≈ |
1.682340011−1.403115613i |
L(1) |
≈ |
1.105104261−0.6181486091i |
L(1) |
≈ |
1.105104261−0.6181486091i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.406−0.913i)T |
| 3 | 1+(0.965−0.258i)T |
| 7 | 1+(−0.987−0.156i)T |
| 11 | 1+(0.891−0.453i)T |
| 13 | 1+(0.777−0.629i)T |
| 17 | 1+(0.998+0.0523i)T |
| 23 | 1+(−0.104+0.994i)T |
| 29 | 1+(0.998−0.0523i)T |
| 31 | 1+(0.309−0.951i)T |
| 37 | 1+(0.309+0.951i)T |
| 43 | 1+(0.406+0.913i)T |
| 47 | 1+(0.629+0.777i)T |
| 53 | 1+(0.998−0.0523i)T |
| 59 | 1+(−0.913+0.406i)T |
| 61 | 1+(0.406−0.913i)T |
| 67 | 1+(0.0523+0.998i)T |
| 71 | 1+(−0.0523+0.998i)T |
| 73 | 1+(−0.866−0.5i)T |
| 79 | 1+(0.965−0.258i)T |
| 83 | 1−T |
| 89 | 1+(0.358+0.933i)T |
| 97 | 1+(−0.838+0.544i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.61574038463760168213526898895, −18.20507282323787822526145542794, −17.089281442647863551128411186914, −16.461679922434794340300567613474, −16.0050989084204416890041568045, −15.36270985668401749270752302482, −14.603726494860805945396344487967, −14.06621500211560343500455463029, −13.57922547567437759124577655117, −12.63182112652778764308962952588, −12.03425772639863760068966370229, −10.59928377254045718844806766494, −10.18412447101343857046167053772, −9.37447412848552531767946145923, −8.92003143726556564064269627868, −8.38044568383038488407780554707, −7.40364037597465768429588215202, −6.80166753977664782587767129245, −6.23149002676165726364767095484, −5.278674650417433258286143372759, −4.244035887525144156489076988494, −3.82105976016406883873827168815, −2.83569429324407155138999732433, −1.785345709158918627204052431537, −0.88360460716598996590924337071,
0.95176440642709606738581778317, 1.28519266054289325054174311693, 2.5902700280043887682581060818, 3.12718668639830320993656345489, 3.72085553596443665568499096163, 4.32184733312297266415851123544, 5.71243818437777302273456017337, 6.4888167626127451731182414626, 7.42396349801433861630821761297, 8.085835585941484941035002104324, 8.69918132026854015390373033450, 9.51732959869873101880412747750, 9.83673259245621815366330390645, 10.63409231322611910469893983629, 11.57584206511293567944301270760, 12.23656222963825862738816037177, 12.90356653741236077204790003001, 13.568855927291718720124220998681, 13.926492524327035626956939856926, 14.854946677160613253229548063884, 15.74543847346020937168144302322, 16.38776744386977486082174080311, 17.16851981821823598464731243697, 17.91431412207593180534297931052, 18.70208304400975257826486617954