Properties

Label 1-3895-3895.1114-r0-0-0
Degree 11
Conductor 38953895
Sign 0.1790.983i0.179 - 0.983i
Analytic cond. 18.088318.0883
Root an. cond. 18.088318.0883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.406 − 0.913i)2-s + (0.965 − 0.258i)3-s + (−0.669 + 0.743i)4-s + (−0.629 − 0.777i)6-s + (−0.987 − 0.156i)7-s + (0.951 + 0.309i)8-s + (0.866 − 0.5i)9-s + (0.891 − 0.453i)11-s + (−0.453 + 0.891i)12-s + (0.777 − 0.629i)13-s + (0.258 + 0.965i)14-s + (−0.104 − 0.994i)16-s + (0.998 + 0.0523i)17-s + (−0.809 − 0.587i)18-s + (−0.994 + 0.104i)21-s + (−0.777 − 0.629i)22-s + ⋯
L(s)  = 1  + (−0.406 − 0.913i)2-s + (0.965 − 0.258i)3-s + (−0.669 + 0.743i)4-s + (−0.629 − 0.777i)6-s + (−0.987 − 0.156i)7-s + (0.951 + 0.309i)8-s + (0.866 − 0.5i)9-s + (0.891 − 0.453i)11-s + (−0.453 + 0.891i)12-s + (0.777 − 0.629i)13-s + (0.258 + 0.965i)14-s + (−0.104 − 0.994i)16-s + (0.998 + 0.0523i)17-s + (−0.809 − 0.587i)18-s + (−0.994 + 0.104i)21-s + (−0.777 − 0.629i)22-s + ⋯

Functional equation

Λ(s)=(3895s/2ΓR(s)L(s)=((0.1790.983i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.179 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3895s/2ΓR(s)L(s)=((0.1790.983i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.179 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 38953895    =    519415 \cdot 19 \cdot 41
Sign: 0.1790.983i0.179 - 0.983i
Analytic conductor: 18.088318.0883
Root analytic conductor: 18.088318.0883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3895(1114,)\chi_{3895} (1114, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3895, (0: ), 0.1790.983i)(1,\ 3895,\ (0:\ ),\ 0.179 - 0.983i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6823400111.403115613i1.682340011 - 1.403115613i
L(12)L(\frac12) \approx 1.6823400111.403115613i1.682340011 - 1.403115613i
L(1)L(1) \approx 1.1051042610.6181486091i1.105104261 - 0.6181486091i
L(1)L(1) \approx 1.1051042610.6181486091i1.105104261 - 0.6181486091i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
41 1 1
good2 1+(0.4060.913i)T 1 + (-0.406 - 0.913i)T
3 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
7 1+(0.9870.156i)T 1 + (-0.987 - 0.156i)T
11 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
13 1+(0.7770.629i)T 1 + (0.777 - 0.629i)T
17 1+(0.998+0.0523i)T 1 + (0.998 + 0.0523i)T
23 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
29 1+(0.9980.0523i)T 1 + (0.998 - 0.0523i)T
31 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
37 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
43 1+(0.406+0.913i)T 1 + (0.406 + 0.913i)T
47 1+(0.629+0.777i)T 1 + (0.629 + 0.777i)T
53 1+(0.9980.0523i)T 1 + (0.998 - 0.0523i)T
59 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
61 1+(0.4060.913i)T 1 + (0.406 - 0.913i)T
67 1+(0.0523+0.998i)T 1 + (0.0523 + 0.998i)T
71 1+(0.0523+0.998i)T 1 + (-0.0523 + 0.998i)T
73 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
79 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
83 1T 1 - T
89 1+(0.358+0.933i)T 1 + (0.358 + 0.933i)T
97 1+(0.838+0.544i)T 1 + (-0.838 + 0.544i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.61574038463760168213526898895, −18.20507282323787822526145542794, −17.089281442647863551128411186914, −16.461679922434794340300567613474, −16.0050989084204416890041568045, −15.36270985668401749270752302482, −14.603726494860805945396344487967, −14.06621500211560343500455463029, −13.57922547567437759124577655117, −12.63182112652778764308962952588, −12.03425772639863760068966370229, −10.59928377254045718844806766494, −10.18412447101343857046167053772, −9.37447412848552531767946145923, −8.92003143726556564064269627868, −8.38044568383038488407780554707, −7.40364037597465768429588215202, −6.80166753977664782587767129245, −6.23149002676165726364767095484, −5.278674650417433258286143372759, −4.244035887525144156489076988494, −3.82105976016406883873827168815, −2.83569429324407155138999732433, −1.785345709158918627204052431537, −0.88360460716598996590924337071, 0.95176440642709606738581778317, 1.28519266054289325054174311693, 2.5902700280043887682581060818, 3.12718668639830320993656345489, 3.72085553596443665568499096163, 4.32184733312297266415851123544, 5.71243818437777302273456017337, 6.4888167626127451731182414626, 7.42396349801433861630821761297, 8.085835585941484941035002104324, 8.69918132026854015390373033450, 9.51732959869873101880412747750, 9.83673259245621815366330390645, 10.63409231322611910469893983629, 11.57584206511293567944301270760, 12.23656222963825862738816037177, 12.90356653741236077204790003001, 13.568855927291718720124220998681, 13.926492524327035626956939856926, 14.854946677160613253229548063884, 15.74543847346020937168144302322, 16.38776744386977486082174080311, 17.16851981821823598464731243697, 17.91431412207593180534297931052, 18.70208304400975257826486617954

Graph of the ZZ-function along the critical line