L(s) = 1 | + (−0.951 + 0.309i)2-s + i·3-s + (0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s − 9-s + (0.809 + 0.587i)11-s + (0.587 + 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + (0.951 − 0.309i)18-s + (−0.309 + 0.951i)21-s + (−0.951 − 0.309i)22-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + i·3-s + (0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s − 9-s + (0.809 + 0.587i)11-s + (0.587 + 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + (0.951 − 0.309i)18-s + (−0.309 + 0.951i)21-s + (−0.951 − 0.309i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.05200015188 + 0.7333831590i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.05200015188 + 0.7333831590i\) |
\(L(1)\) |
\(\approx\) |
\(0.5879420060 + 0.3908900659i\) |
\(L(1)\) |
\(\approx\) |
\(0.5879420060 + 0.3908900659i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 + (0.951 + 0.309i)T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (-0.951 + 0.309i)T \) |
| 17 | \( 1 + (0.587 - 0.809i)T \) |
| 23 | \( 1 + (-0.951 + 0.309i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 + (-0.951 + 0.309i)T \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.587 - 0.809i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.587 + 0.809i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.587 + 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.102844232580913728221126398196, −17.60312106953656940807966764097, −16.98021861955808965358688584639, −16.65776348998138593204132193245, −15.48617008240154837098059979442, −14.61148958673430880439559754747, −14.179100819430835913308858165389, −13.26586908178788885843903993787, −12.40485351466827625005812805940, −11.85000337460914216545670790496, −11.46355767855421010826889970503, −10.482446789939241453082653175617, −9.98306289696234226777590302581, −8.88107590764575231562336367426, −8.22616879221748310117112431799, −7.931935911162578629822548198293, −7.04623284735927093486744421422, −6.43402601673676709697371863941, −5.65604071247792353172460095723, −4.557298821972133717305115410031, −3.484572006268559098501401323463, −2.73386039139824691067573756140, −1.73662286826529842894111711386, −1.34270511155987952531896116439, −0.2961505980452717329150567932,
1.15399025328717130860373637382, 2.10654986589800086457361121658, 2.80148833530968293336428480887, 3.95549978070035477193262362990, 4.87390423017895542617951433145, 5.267257663389797186880291321339, 6.27208657809822585739423757455, 7.04708876731380277995574506049, 7.92900629691840603459438793791, 8.4476202193987432997343669351, 9.30191781530897992531811780358, 9.805373159937960395287499912816, 10.28643823917971162392602565837, 11.29371400535651646722269777292, 11.810835277656462650300151902841, 12.190217090320786899869120656001, 13.918659859612870504575139139080, 14.45336516004186402924927497377, 14.80147164740296888718857177989, 15.67612932836236248651167448088, 16.1448653053870488279810116332, 16.94244688279154234104320258739, 17.5729269829017230997099212295, 17.83996097612883694930075808400, 18.90132247774901001490786083448