L(s) = 1 | + (−0.951 + 0.309i)2-s + i·3-s + (0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s − 9-s + (0.809 + 0.587i)11-s + (0.587 + 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + (0.951 − 0.309i)18-s + (−0.309 + 0.951i)21-s + (−0.951 − 0.309i)22-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + i·3-s + (0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s − 9-s + (0.809 + 0.587i)11-s + (0.587 + 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + (0.951 − 0.309i)18-s + (−0.309 + 0.951i)21-s + (−0.951 − 0.309i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.989−0.141i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(−0.989−0.141i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
−0.989−0.141i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), −0.989−0.141i)
|
Particular Values
L(21) |
≈ |
−0.05200015188+0.7333831590i |
L(21) |
≈ |
−0.05200015188+0.7333831590i |
L(1) |
≈ |
0.5879420060+0.3908900659i |
L(1) |
≈ |
0.5879420060+0.3908900659i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.951+0.309i)T |
| 3 | 1+iT |
| 7 | 1+(0.951+0.309i)T |
| 11 | 1+(0.809+0.587i)T |
| 13 | 1+(−0.951+0.309i)T |
| 17 | 1+(0.587−0.809i)T |
| 23 | 1+(−0.951+0.309i)T |
| 29 | 1+(0.809−0.587i)T |
| 31 | 1+(0.809+0.587i)T |
| 37 | 1+(−0.587−0.809i)T |
| 43 | 1+(−0.951+0.309i)T |
| 47 | 1+(−0.951+0.309i)T |
| 53 | 1+(−0.587−0.809i)T |
| 59 | 1+(0.309+0.951i)T |
| 61 | 1+(0.309−0.951i)T |
| 67 | 1+(0.587+0.809i)T |
| 71 | 1+(−0.809−0.587i)T |
| 73 | 1+iT |
| 79 | 1−T |
| 83 | 1+iT |
| 89 | 1+(−0.309+0.951i)T |
| 97 | 1+(0.587+0.809i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.102844232580913728221126398196, −17.60312106953656940807966764097, −16.98021861955808965358688584639, −16.65776348998138593204132193245, −15.48617008240154837098059979442, −14.61148958673430880439559754747, −14.179100819430835913308858165389, −13.26586908178788885843903993787, −12.40485351466827625005812805940, −11.85000337460914216545670790496, −11.46355767855421010826889970503, −10.482446789939241453082653175617, −9.98306289696234226777590302581, −8.88107590764575231562336367426, −8.22616879221748310117112431799, −7.931935911162578629822548198293, −7.04623284735927093486744421422, −6.43402601673676709697371863941, −5.65604071247792353172460095723, −4.557298821972133717305115410031, −3.484572006268559098501401323463, −2.73386039139824691067573756140, −1.73662286826529842894111711386, −1.34270511155987952531896116439, −0.2961505980452717329150567932,
1.15399025328717130860373637382, 2.10654986589800086457361121658, 2.80148833530968293336428480887, 3.95549978070035477193262362990, 4.87390423017895542617951433145, 5.267257663389797186880291321339, 6.27208657809822585739423757455, 7.04708876731380277995574506049, 7.92900629691840603459438793791, 8.4476202193987432997343669351, 9.30191781530897992531811780358, 9.805373159937960395287499912816, 10.28643823917971162392602565837, 11.29371400535651646722269777292, 11.810835277656462650300151902841, 12.190217090320786899869120656001, 13.918659859612870504575139139080, 14.45336516004186402924927497377, 14.80147164740296888718857177989, 15.67612932836236248651167448088, 16.1448653053870488279810116332, 16.94244688279154234104320258739, 17.5729269829017230997099212295, 17.83996097612883694930075808400, 18.90132247774901001490786083448