Properties

Label 1-3895-3895.113-r0-0-0
Degree 11
Conductor 38953895
Sign 0.9890.141i-0.989 - 0.141i
Analytic cond. 18.088318.0883
Root an. cond. 18.088318.0883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.951 + 0.309i)2-s + i·3-s + (0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s − 9-s + (0.809 + 0.587i)11-s + (0.587 + 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + (0.951 − 0.309i)18-s + (−0.309 + 0.951i)21-s + (−0.951 − 0.309i)22-s + ⋯
L(s)  = 1  + (−0.951 + 0.309i)2-s + i·3-s + (0.809 − 0.587i)4-s + (−0.309 − 0.951i)6-s + (0.951 + 0.309i)7-s + (−0.587 + 0.809i)8-s − 9-s + (0.809 + 0.587i)11-s + (0.587 + 0.809i)12-s + (−0.951 + 0.309i)13-s − 14-s + (0.309 − 0.951i)16-s + (0.587 − 0.809i)17-s + (0.951 − 0.309i)18-s + (−0.309 + 0.951i)21-s + (−0.951 − 0.309i)22-s + ⋯

Functional equation

Λ(s)=(3895s/2ΓR(s)L(s)=((0.9890.141i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3895s/2ΓR(s)L(s)=((0.9890.141i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 38953895    =    519415 \cdot 19 \cdot 41
Sign: 0.9890.141i-0.989 - 0.141i
Analytic conductor: 18.088318.0883
Root analytic conductor: 18.088318.0883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3895(113,)\chi_{3895} (113, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3895, (0: ), 0.9890.141i)(1,\ 3895,\ (0:\ ),\ -0.989 - 0.141i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.05200015188+0.7333831590i-0.05200015188 + 0.7333831590i
L(12)L(\frac12) \approx 0.05200015188+0.7333831590i-0.05200015188 + 0.7333831590i
L(1)L(1) \approx 0.5879420060+0.3908900659i0.5879420060 + 0.3908900659i
L(1)L(1) \approx 0.5879420060+0.3908900659i0.5879420060 + 0.3908900659i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
41 1 1
good2 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
3 1+iT 1 + iT
7 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
11 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
13 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
17 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
23 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
29 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
31 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
37 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
43 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
47 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
53 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
59 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
61 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
67 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
71 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
73 1+iT 1 + iT
79 1T 1 - T
83 1+iT 1 + iT
89 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
97 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.102844232580913728221126398196, −17.60312106953656940807966764097, −16.98021861955808965358688584639, −16.65776348998138593204132193245, −15.48617008240154837098059979442, −14.61148958673430880439559754747, −14.179100819430835913308858165389, −13.26586908178788885843903993787, −12.40485351466827625005812805940, −11.85000337460914216545670790496, −11.46355767855421010826889970503, −10.482446789939241453082653175617, −9.98306289696234226777590302581, −8.88107590764575231562336367426, −8.22616879221748310117112431799, −7.931935911162578629822548198293, −7.04623284735927093486744421422, −6.43402601673676709697371863941, −5.65604071247792353172460095723, −4.557298821972133717305115410031, −3.484572006268559098501401323463, −2.73386039139824691067573756140, −1.73662286826529842894111711386, −1.34270511155987952531896116439, −0.2961505980452717329150567932, 1.15399025328717130860373637382, 2.10654986589800086457361121658, 2.80148833530968293336428480887, 3.95549978070035477193262362990, 4.87390423017895542617951433145, 5.267257663389797186880291321339, 6.27208657809822585739423757455, 7.04708876731380277995574506049, 7.92900629691840603459438793791, 8.4476202193987432997343669351, 9.30191781530897992531811780358, 9.805373159937960395287499912816, 10.28643823917971162392602565837, 11.29371400535651646722269777292, 11.810835277656462650300151902841, 12.190217090320786899869120656001, 13.918659859612870504575139139080, 14.45336516004186402924927497377, 14.80147164740296888718857177989, 15.67612932836236248651167448088, 16.1448653053870488279810116332, 16.94244688279154234104320258739, 17.5729269829017230997099212295, 17.83996097612883694930075808400, 18.90132247774901001490786083448

Graph of the ZZ-function along the critical line