L(s) = 1 | + (−0.882 + 0.469i)2-s + (−0.0871 + 0.996i)3-s + (0.559 − 0.829i)4-s + (−0.390 − 0.920i)6-s + (0.998 + 0.0523i)7-s + (−0.104 + 0.994i)8-s + (−0.984 − 0.173i)9-s + (−0.777 + 0.629i)11-s + (0.777 + 0.629i)12-s + (−0.390 − 0.920i)13-s + (−0.906 + 0.422i)14-s + (−0.374 − 0.927i)16-s + (−0.945 + 0.325i)17-s + (0.951 − 0.309i)18-s + (−0.139 + 0.990i)21-s + (0.390 − 0.920i)22-s + ⋯ |
L(s) = 1 | + (−0.882 + 0.469i)2-s + (−0.0871 + 0.996i)3-s + (0.559 − 0.829i)4-s + (−0.390 − 0.920i)6-s + (0.998 + 0.0523i)7-s + (−0.104 + 0.994i)8-s + (−0.984 − 0.173i)9-s + (−0.777 + 0.629i)11-s + (0.777 + 0.629i)12-s + (−0.390 − 0.920i)13-s + (−0.906 + 0.422i)14-s + (−0.374 − 0.927i)16-s + (−0.945 + 0.325i)17-s + (0.951 − 0.309i)18-s + (−0.139 + 0.990i)21-s + (0.390 − 0.920i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7468687017 + 0.2581722831i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7468687017 + 0.2581722831i\) |
\(L(1)\) |
\(\approx\) |
\(0.5952907343 + 0.2764120500i\) |
\(L(1)\) |
\(\approx\) |
\(0.5952907343 + 0.2764120500i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.882 + 0.469i)T \) |
| 3 | \( 1 + (-0.0871 + 0.996i)T \) |
| 7 | \( 1 + (0.998 + 0.0523i)T \) |
| 11 | \( 1 + (-0.777 + 0.629i)T \) |
| 13 | \( 1 + (-0.390 - 0.920i)T \) |
| 17 | \( 1 + (-0.945 + 0.325i)T \) |
| 23 | \( 1 + (0.788 - 0.615i)T \) |
| 29 | \( 1 + (-0.325 + 0.945i)T \) |
| 31 | \( 1 + (-0.913 + 0.406i)T \) |
| 37 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 + (-0.0348 + 0.999i)T \) |
| 47 | \( 1 + (-0.798 - 0.601i)T \) |
| 53 | \( 1 + (-0.190 - 0.981i)T \) |
| 59 | \( 1 + (0.882 - 0.469i)T \) |
| 61 | \( 1 + (0.999 - 0.0348i)T \) |
| 67 | \( 1 + (0.325 - 0.945i)T \) |
| 71 | \( 1 + (0.190 - 0.981i)T \) |
| 73 | \( 1 + (-0.766 + 0.642i)T \) |
| 79 | \( 1 + (-0.996 - 0.0871i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.974 + 0.224i)T \) |
| 97 | \( 1 + (-0.0174 - 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.669156317811460155025418118065, −17.7756230843928040091751931879, −17.36567009369346383516263660651, −16.76405103918472757363733892022, −15.92896547298903504689391395058, −15.103515795509745599797750947547, −14.22935299389335503554484762373, −13.38916562070314391176571297445, −13.052588948790246045220363253287, −11.96965633622447761885390424646, −11.46555393313218112122266500785, −11.11691033432705894141053794510, −10.26638772781980984959296027072, −9.18582808460989274498264567623, −8.68553231110803222821522161740, −7.99015173143016190982318006538, −7.33711294354618476443452919478, −6.84663205893505058856651487787, −5.84483081914684037693971337990, −4.99743766576214701396442654137, −3.99635636653026740622263842090, −2.90003300473650720972488969456, −2.20533284496345884116240995132, −1.635425994789945082538289133121, −0.67217530696114565728601105040,
0.437662294218205416879493033453, 1.79553141260894442558306756378, 2.47275554554369897202523910631, 3.4736826570919360057870971937, 4.76184124176705836010688641228, 5.03708343179971279979440414519, 5.71395342999506944037840089087, 6.79775896350006771828998510071, 7.49971038102934923882208603796, 8.355666320219815986411818018876, 8.71393838460071051632041127765, 9.61074921534025756920916613069, 10.26173676069634650446260972491, 10.968045491822579778594244394943, 11.142337206589326899194367943654, 12.30444486281535886867544839601, 13.12225094253853240808222336384, 14.33164425824123169585941046454, 14.82604454670826119103991103013, 15.17747568056178671164996108333, 15.96282914797067162075944415167, 16.50822635135378697514517659074, 17.42224899089621256529424284348, 17.76657887450420370592364659818, 18.242787508802415606220055723388