Properties

Label 1-3895-3895.1137-r0-0-0
Degree 11
Conductor 38953895
Sign 0.786+0.617i0.786 + 0.617i
Analytic cond. 18.088318.0883
Root an. cond. 18.088318.0883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.882 + 0.469i)2-s + (−0.0871 + 0.996i)3-s + (0.559 − 0.829i)4-s + (−0.390 − 0.920i)6-s + (0.998 + 0.0523i)7-s + (−0.104 + 0.994i)8-s + (−0.984 − 0.173i)9-s + (−0.777 + 0.629i)11-s + (0.777 + 0.629i)12-s + (−0.390 − 0.920i)13-s + (−0.906 + 0.422i)14-s + (−0.374 − 0.927i)16-s + (−0.945 + 0.325i)17-s + (0.951 − 0.309i)18-s + (−0.139 + 0.990i)21-s + (0.390 − 0.920i)22-s + ⋯
L(s)  = 1  + (−0.882 + 0.469i)2-s + (−0.0871 + 0.996i)3-s + (0.559 − 0.829i)4-s + (−0.390 − 0.920i)6-s + (0.998 + 0.0523i)7-s + (−0.104 + 0.994i)8-s + (−0.984 − 0.173i)9-s + (−0.777 + 0.629i)11-s + (0.777 + 0.629i)12-s + (−0.390 − 0.920i)13-s + (−0.906 + 0.422i)14-s + (−0.374 − 0.927i)16-s + (−0.945 + 0.325i)17-s + (0.951 − 0.309i)18-s + (−0.139 + 0.990i)21-s + (0.390 − 0.920i)22-s + ⋯

Functional equation

Λ(s)=(3895s/2ΓR(s)L(s)=((0.786+0.617i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3895s/2ΓR(s)L(s)=((0.786+0.617i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 38953895    =    519415 \cdot 19 \cdot 41
Sign: 0.786+0.617i0.786 + 0.617i
Analytic conductor: 18.088318.0883
Root analytic conductor: 18.088318.0883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3895(1137,)\chi_{3895} (1137, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3895, (0: ), 0.786+0.617i)(1,\ 3895,\ (0:\ ),\ 0.786 + 0.617i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.7468687017+0.2581722831i0.7468687017 + 0.2581722831i
L(12)L(\frac12) \approx 0.7468687017+0.2581722831i0.7468687017 + 0.2581722831i
L(1)L(1) \approx 0.5952907343+0.2764120500i0.5952907343 + 0.2764120500i
L(1)L(1) \approx 0.5952907343+0.2764120500i0.5952907343 + 0.2764120500i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
41 1 1
good2 1+(0.882+0.469i)T 1 + (-0.882 + 0.469i)T
3 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
7 1+(0.998+0.0523i)T 1 + (0.998 + 0.0523i)T
11 1+(0.777+0.629i)T 1 + (-0.777 + 0.629i)T
13 1+(0.3900.920i)T 1 + (-0.390 - 0.920i)T
17 1+(0.945+0.325i)T 1 + (-0.945 + 0.325i)T
23 1+(0.7880.615i)T 1 + (0.788 - 0.615i)T
29 1+(0.325+0.945i)T 1 + (-0.325 + 0.945i)T
31 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
37 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
43 1+(0.0348+0.999i)T 1 + (-0.0348 + 0.999i)T
47 1+(0.7980.601i)T 1 + (-0.798 - 0.601i)T
53 1+(0.1900.981i)T 1 + (-0.190 - 0.981i)T
59 1+(0.8820.469i)T 1 + (0.882 - 0.469i)T
61 1+(0.9990.0348i)T 1 + (0.999 - 0.0348i)T
67 1+(0.3250.945i)T 1 + (0.325 - 0.945i)T
71 1+(0.1900.981i)T 1 + (0.190 - 0.981i)T
73 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
79 1+(0.9960.0871i)T 1 + (-0.996 - 0.0871i)T
83 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
89 1+(0.974+0.224i)T 1 + (0.974 + 0.224i)T
97 1+(0.01740.999i)T 1 + (-0.0174 - 0.999i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.669156317811460155025418118065, −17.7756230843928040091751931879, −17.36567009369346383516263660651, −16.76405103918472757363733892022, −15.92896547298903504689391395058, −15.103515795509745599797750947547, −14.22935299389335503554484762373, −13.38916562070314391176571297445, −13.052588948790246045220363253287, −11.96965633622447761885390424646, −11.46555393313218112122266500785, −11.11691033432705894141053794510, −10.26638772781980984959296027072, −9.18582808460989274498264567623, −8.68553231110803222821522161740, −7.99015173143016190982318006538, −7.33711294354618476443452919478, −6.84663205893505058856651487787, −5.84483081914684037693971337990, −4.99743766576214701396442654137, −3.99635636653026740622263842090, −2.90003300473650720972488969456, −2.20533284496345884116240995132, −1.635425994789945082538289133121, −0.67217530696114565728601105040, 0.437662294218205416879493033453, 1.79553141260894442558306756378, 2.47275554554369897202523910631, 3.4736826570919360057870971937, 4.76184124176705836010688641228, 5.03708343179971279979440414519, 5.71395342999506944037840089087, 6.79775896350006771828998510071, 7.49971038102934923882208603796, 8.355666320219815986411818018876, 8.71393838460071051632041127765, 9.61074921534025756920916613069, 10.26173676069634650446260972491, 10.968045491822579778594244394943, 11.142337206589326899194367943654, 12.30444486281535886867544839601, 13.12225094253853240808222336384, 14.33164425824123169585941046454, 14.82604454670826119103991103013, 15.17747568056178671164996108333, 15.96282914797067162075944415167, 16.50822635135378697514517659074, 17.42224899089621256529424284348, 17.76657887450420370592364659818, 18.242787508802415606220055723388

Graph of the ZZ-function along the critical line