L(s) = 1 | + (−0.882 + 0.469i)2-s + (−0.0871 + 0.996i)3-s + (0.559 − 0.829i)4-s + (−0.390 − 0.920i)6-s + (0.998 + 0.0523i)7-s + (−0.104 + 0.994i)8-s + (−0.984 − 0.173i)9-s + (−0.777 + 0.629i)11-s + (0.777 + 0.629i)12-s + (−0.390 − 0.920i)13-s + (−0.906 + 0.422i)14-s + (−0.374 − 0.927i)16-s + (−0.945 + 0.325i)17-s + (0.951 − 0.309i)18-s + (−0.139 + 0.990i)21-s + (0.390 − 0.920i)22-s + ⋯ |
L(s) = 1 | + (−0.882 + 0.469i)2-s + (−0.0871 + 0.996i)3-s + (0.559 − 0.829i)4-s + (−0.390 − 0.920i)6-s + (0.998 + 0.0523i)7-s + (−0.104 + 0.994i)8-s + (−0.984 − 0.173i)9-s + (−0.777 + 0.629i)11-s + (0.777 + 0.629i)12-s + (−0.390 − 0.920i)13-s + (−0.906 + 0.422i)14-s + (−0.374 − 0.927i)16-s + (−0.945 + 0.325i)17-s + (0.951 − 0.309i)18-s + (−0.139 + 0.990i)21-s + (0.390 − 0.920i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.786+0.617i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.786+0.617i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
0.786+0.617i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1137,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), 0.786+0.617i)
|
Particular Values
L(21) |
≈ |
0.7468687017+0.2581722831i |
L(21) |
≈ |
0.7468687017+0.2581722831i |
L(1) |
≈ |
0.5952907343+0.2764120500i |
L(1) |
≈ |
0.5952907343+0.2764120500i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.882+0.469i)T |
| 3 | 1+(−0.0871+0.996i)T |
| 7 | 1+(0.998+0.0523i)T |
| 11 | 1+(−0.777+0.629i)T |
| 13 | 1+(−0.390−0.920i)T |
| 17 | 1+(−0.945+0.325i)T |
| 23 | 1+(0.788−0.615i)T |
| 29 | 1+(−0.325+0.945i)T |
| 31 | 1+(−0.913+0.406i)T |
| 37 | 1+(−0.587−0.809i)T |
| 43 | 1+(−0.0348+0.999i)T |
| 47 | 1+(−0.798−0.601i)T |
| 53 | 1+(−0.190−0.981i)T |
| 59 | 1+(0.882−0.469i)T |
| 61 | 1+(0.999−0.0348i)T |
| 67 | 1+(0.325−0.945i)T |
| 71 | 1+(0.190−0.981i)T |
| 73 | 1+(−0.766+0.642i)T |
| 79 | 1+(−0.996−0.0871i)T |
| 83 | 1+(0.866+0.5i)T |
| 89 | 1+(0.974+0.224i)T |
| 97 | 1+(−0.0174−0.999i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.669156317811460155025418118065, −17.7756230843928040091751931879, −17.36567009369346383516263660651, −16.76405103918472757363733892022, −15.92896547298903504689391395058, −15.103515795509745599797750947547, −14.22935299389335503554484762373, −13.38916562070314391176571297445, −13.052588948790246045220363253287, −11.96965633622447761885390424646, −11.46555393313218112122266500785, −11.11691033432705894141053794510, −10.26638772781980984959296027072, −9.18582808460989274498264567623, −8.68553231110803222821522161740, −7.99015173143016190982318006538, −7.33711294354618476443452919478, −6.84663205893505058856651487787, −5.84483081914684037693971337990, −4.99743766576214701396442654137, −3.99635636653026740622263842090, −2.90003300473650720972488969456, −2.20533284496345884116240995132, −1.635425994789945082538289133121, −0.67217530696114565728601105040,
0.437662294218205416879493033453, 1.79553141260894442558306756378, 2.47275554554369897202523910631, 3.4736826570919360057870971937, 4.76184124176705836010688641228, 5.03708343179971279979440414519, 5.71395342999506944037840089087, 6.79775896350006771828998510071, 7.49971038102934923882208603796, 8.355666320219815986411818018876, 8.71393838460071051632041127765, 9.61074921534025756920916613069, 10.26173676069634650446260972491, 10.968045491822579778594244394943, 11.142337206589326899194367943654, 12.30444486281535886867544839601, 13.12225094253853240808222336384, 14.33164425824123169585941046454, 14.82604454670826119103991103013, 15.17747568056178671164996108333, 15.96282914797067162075944415167, 16.50822635135378697514517659074, 17.42224899089621256529424284348, 17.76657887450420370592364659818, 18.242787508802415606220055723388