L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)5-s + (0.766 + 0.642i)7-s + (0.5 − 0.866i)8-s + (−0.5 − 0.866i)10-s + (−0.173 + 0.984i)11-s + (−0.939 − 0.342i)13-s + (0.939 + 0.342i)14-s + (0.173 − 0.984i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.766 − 0.642i)20-s + (0.173 + 0.984i)22-s + (−0.766 + 0.642i)23-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)5-s + (0.766 + 0.642i)7-s + (0.5 − 0.866i)8-s + (−0.5 − 0.866i)10-s + (−0.173 + 0.984i)11-s + (−0.939 − 0.342i)13-s + (0.939 + 0.342i)14-s + (0.173 − 0.984i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.766 − 0.642i)20-s + (0.173 + 0.984i)22-s + (−0.766 + 0.642i)23-s + ⋯ |
Λ(s)=(=(27s/2ΓR(s+1)L(s)(0.686−0.727i)Λ(1−s)
Λ(s)=(=(27s/2ΓR(s+1)L(s)(0.686−0.727i)Λ(1−s)
Degree: |
1 |
Conductor: |
27
= 33
|
Sign: |
0.686−0.727i
|
Analytic conductor: |
2.90155 |
Root analytic conductor: |
2.90155 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ27(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 27, (1: ), 0.686−0.727i)
|
Particular Values
L(21) |
≈ |
2.071104870−0.8933874351i |
L(21) |
≈ |
2.071104870−0.8933874351i |
L(1) |
≈ |
1.693468257−0.5069911147i |
L(1) |
≈ |
1.693468257−0.5069911147i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.939−0.342i)T |
| 5 | 1+(−0.173−0.984i)T |
| 7 | 1+(0.766+0.642i)T |
| 11 | 1+(−0.173+0.984i)T |
| 13 | 1+(−0.939−0.342i)T |
| 17 | 1+(0.5+0.866i)T |
| 19 | 1+(−0.5+0.866i)T |
| 23 | 1+(−0.766+0.642i)T |
| 29 | 1+(0.939−0.342i)T |
| 31 | 1+(0.766−0.642i)T |
| 37 | 1+(−0.5−0.866i)T |
| 41 | 1+(0.939+0.342i)T |
| 43 | 1+(0.173−0.984i)T |
| 47 | 1+(−0.766−0.642i)T |
| 53 | 1−T |
| 59 | 1+(−0.173−0.984i)T |
| 61 | 1+(0.766+0.642i)T |
| 67 | 1+(−0.939−0.342i)T |
| 71 | 1+(0.5+0.866i)T |
| 73 | 1+(−0.5+0.866i)T |
| 79 | 1+(−0.939+0.342i)T |
| 83 | 1+(0.939−0.342i)T |
| 89 | 1+(0.5−0.866i)T |
| 97 | 1+(0.173−0.984i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−37.95795327445094493223772281054, −36.44802792303360602147236236885, −34.42007554618066471941828844409, −34.15019652323261997852977506671, −32.64280915195817769583370829302, −31.36834947262606727605218485366, −30.20374539284429544169813633525, −29.4084404225114357787276165107, −27.08801668705320388410210023406, −26.14393830784178631658583858488, −24.490886264181400886607138246431, −23.48146292953663819578070443289, −22.1926824742599547555411765847, −21.10207807132164329616702587115, −19.474105673837352034479987755721, −17.65233965292251957060418623829, −16.13394544126673928874690926553, −14.58147314594082583881212134431, −13.82344868704737974178134617838, −11.83148258646725015257941183458, −10.664298392187542185048700515350, −7.89316727903529802303258863456, −6.60501479198176008537476565692, −4.67511275894351686242751712383, −2.860516751384937779069980089754,
1.92612712073415051907750420112, 4.36520335611636501165930356609, 5.601706788614045471861445311395, 7.91438509969654085095805260558, 9.991470414909572147048294478793, 11.9355147367484747346440851740, 12.68007819388464012863046390259, 14.50437732966114659069477724520, 15.63388976653377013031231855848, 17.3680276979290959787984954896, 19.378554976055638172940211534073, 20.62589196493439134091083736182, 21.58064217699438680979435816553, 23.16814170117636041896505813731, 24.320587100993145732504595963955, 25.271109151244888044954697463849, 27.67340199926699433354801911443, 28.46321836907213471252069700940, 29.95543595323483945612623839767, 31.26567410102111338560968710387, 32.03322842928821457711962847547, 33.39356908290097460807293025414, 34.564308501135083620274381586638, 36.31841020614197660949147835154, 37.5133816611696645329604491317