L(s) = 1 | + (0.0581 − 0.998i)2-s + (−0.993 − 0.116i)4-s + (−0.973 + 0.230i)5-s + (0.597 + 0.802i)7-s + (−0.173 + 0.984i)8-s + (0.173 + 0.984i)10-s + (0.686 − 0.727i)11-s + (0.893 + 0.448i)13-s + (0.835 − 0.549i)14-s + (0.973 + 0.230i)16-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (0.993 − 0.116i)20-s + (−0.686 − 0.727i)22-s + (−0.597 + 0.802i)23-s + ⋯ |
L(s) = 1 | + (0.0581 − 0.998i)2-s + (−0.993 − 0.116i)4-s + (−0.973 + 0.230i)5-s + (0.597 + 0.802i)7-s + (−0.173 + 0.984i)8-s + (0.173 + 0.984i)10-s + (0.686 − 0.727i)11-s + (0.893 + 0.448i)13-s + (0.835 − 0.549i)14-s + (0.973 + 0.230i)16-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (0.993 − 0.116i)20-s + (−0.686 − 0.727i)22-s + (−0.597 + 0.802i)23-s + ⋯ |
Λ(s)=(=(81s/2ΓR(s+1)L(s)(0.995−0.0968i)Λ(1−s)
Λ(s)=(=(81s/2ΓR(s+1)L(s)(0.995−0.0968i)Λ(1−s)
Degree: |
1 |
Conductor: |
81
= 34
|
Sign: |
0.995−0.0968i
|
Analytic conductor: |
8.70465 |
Root analytic conductor: |
8.70465 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 81, (1: ), 0.995−0.0968i)
|
Particular Values
L(21) |
≈ |
1.319144983−0.06400410741i |
L(21) |
≈ |
1.319144983−0.06400410741i |
L(1) |
≈ |
0.9544380923−0.2374136663i |
L(1) |
≈ |
0.9544380923−0.2374136663i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.0581−0.998i)T |
| 5 | 1+(−0.973+0.230i)T |
| 7 | 1+(0.597+0.802i)T |
| 11 | 1+(0.686−0.727i)T |
| 13 | 1+(0.893+0.448i)T |
| 17 | 1+(0.939+0.342i)T |
| 19 | 1+(−0.939+0.342i)T |
| 23 | 1+(−0.597+0.802i)T |
| 29 | 1+(0.835+0.549i)T |
| 31 | 1+(0.396+0.918i)T |
| 37 | 1+(0.766−0.642i)T |
| 41 | 1+(0.0581+0.998i)T |
| 43 | 1+(−0.286−0.957i)T |
| 47 | 1+(−0.396+0.918i)T |
| 53 | 1+(0.5+0.866i)T |
| 59 | 1+(0.686+0.727i)T |
| 61 | 1+(−0.993+0.116i)T |
| 67 | 1+(−0.835+0.549i)T |
| 71 | 1+(−0.173−0.984i)T |
| 73 | 1+(0.173−0.984i)T |
| 79 | 1+(−0.0581+0.998i)T |
| 83 | 1+(0.0581−0.998i)T |
| 89 | 1+(−0.173+0.984i)T |
| 97 | 1+(0.973+0.230i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−30.757694830242587105301095518446, −30.20016198965782672277304166906, −27.98452329820870590298644766930, −27.577685651213247609628481554788, −26.4534444275305045454078026627, −25.365358501108140093793714190420, −24.22945546424682803117305005862, −23.30066026019023919857706307905, −22.70927955295718166831115809419, −20.98053577687851797659776638049, −19.83336377940792012896691415748, −18.52573520218044133047923691726, −17.316334251832771652436395209136, −16.41247388598860203728242110934, −15.246536043473930778475365182405, −14.34617002477669217570995121341, −13.03226883722862622200547842025, −11.7256011957965632251892732211, −10.150391582934874880509918135761, −8.509112839843962053942580000126, −7.69876900724556852403759875103, −6.47651925252235632222972295379, −4.706849908844874930677044655247, −3.847220132739422287990209419835, −0.7567806208400374489783704841,
1.366477733955942754005466486664, 3.19330514990299328748306998589, 4.31868310749863679989037567318, 5.96901027668593055310559192606, 8.10961565670858111002636243608, 8.91620371384591359013336783182, 10.64497134596835764517819544867, 11.6092690874616166026455620283, 12.33808469240489253974958697323, 13.97984759220641738599748054075, 14.939171205949179704444809824233, 16.41004124507860243654560774771, 17.99570393082350223099580951004, 18.95725488623569863056239213933, 19.66997022643201349901002664936, 21.12505017034725994572243121132, 21.79357807785331076025281675740, 23.164474090260443314369269159020, 23.88709871907000009727868641357, 25.50032449050005935926447942779, 26.963864995462390272882233914203, 27.64977987975326564451881933145, 28.43681281070633870635319087725, 29.91598671227780470617137708450, 30.60862160010000405265784908855