L(s) = 1 | + (0.0581 − 0.998i)2-s + (−0.993 − 0.116i)4-s + (−0.973 + 0.230i)5-s + (0.597 + 0.802i)7-s + (−0.173 + 0.984i)8-s + (0.173 + 0.984i)10-s + (0.686 − 0.727i)11-s + (0.893 + 0.448i)13-s + (0.835 − 0.549i)14-s + (0.973 + 0.230i)16-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (0.993 − 0.116i)20-s + (−0.686 − 0.727i)22-s + (−0.597 + 0.802i)23-s + ⋯ |
L(s) = 1 | + (0.0581 − 0.998i)2-s + (−0.993 − 0.116i)4-s + (−0.973 + 0.230i)5-s + (0.597 + 0.802i)7-s + (−0.173 + 0.984i)8-s + (0.173 + 0.984i)10-s + (0.686 − 0.727i)11-s + (0.893 + 0.448i)13-s + (0.835 − 0.549i)14-s + (0.973 + 0.230i)16-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (0.993 − 0.116i)20-s + (−0.686 − 0.727i)22-s + (−0.597 + 0.802i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.995 - 0.0968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.995 - 0.0968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.319144983 - 0.06400410741i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.319144983 - 0.06400410741i\) |
\(L(1)\) |
\(\approx\) |
\(0.9544380923 - 0.2374136663i\) |
\(L(1)\) |
\(\approx\) |
\(0.9544380923 - 0.2374136663i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.0581 - 0.998i)T \) |
| 5 | \( 1 + (-0.973 + 0.230i)T \) |
| 7 | \( 1 + (0.597 + 0.802i)T \) |
| 11 | \( 1 + (0.686 - 0.727i)T \) |
| 13 | \( 1 + (0.893 + 0.448i)T \) |
| 17 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (-0.597 + 0.802i)T \) |
| 29 | \( 1 + (0.835 + 0.549i)T \) |
| 31 | \( 1 + (0.396 + 0.918i)T \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
| 41 | \( 1 + (0.0581 + 0.998i)T \) |
| 43 | \( 1 + (-0.286 - 0.957i)T \) |
| 47 | \( 1 + (-0.396 + 0.918i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.686 + 0.727i)T \) |
| 61 | \( 1 + (-0.993 + 0.116i)T \) |
| 67 | \( 1 + (-0.835 + 0.549i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (-0.0581 + 0.998i)T \) |
| 83 | \( 1 + (0.0581 - 0.998i)T \) |
| 89 | \( 1 + (-0.173 + 0.984i)T \) |
| 97 | \( 1 + (0.973 + 0.230i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.757694830242587105301095518446, −30.20016198965782672277304166906, −27.98452329820870590298644766930, −27.577685651213247609628481554788, −26.4534444275305045454078026627, −25.365358501108140093793714190420, −24.22945546424682803117305005862, −23.30066026019023919857706307905, −22.70927955295718166831115809419, −20.98053577687851797659776638049, −19.83336377940792012896691415748, −18.52573520218044133047923691726, −17.316334251832771652436395209136, −16.41247388598860203728242110934, −15.246536043473930778475365182405, −14.34617002477669217570995121341, −13.03226883722862622200547842025, −11.7256011957965632251892732211, −10.150391582934874880509918135761, −8.509112839843962053942580000126, −7.69876900724556852403759875103, −6.47651925252235632222972295379, −4.706849908844874930677044655247, −3.847220132739422287990209419835, −0.7567806208400374489783704841,
1.366477733955942754005466486664, 3.19330514990299328748306998589, 4.31868310749863679989037567318, 5.96901027668593055310559192606, 8.10961565670858111002636243608, 8.91620371384591359013336783182, 10.64497134596835764517819544867, 11.6092690874616166026455620283, 12.33808469240489253974958697323, 13.97984759220641738599748054075, 14.939171205949179704444809824233, 16.41004124507860243654560774771, 17.99570393082350223099580951004, 18.95725488623569863056239213933, 19.66997022643201349901002664936, 21.12505017034725994572243121132, 21.79357807785331076025281675740, 23.164474090260443314369269159020, 23.88709871907000009727868641357, 25.50032449050005935926447942779, 26.963864995462390272882233914203, 27.64977987975326564451881933145, 28.43681281070633870635319087725, 29.91598671227780470617137708450, 30.60862160010000405265784908855