Properties

Label 1-3e4-81.68-r1-0-0
Degree 11
Conductor 8181
Sign 0.824+0.565i0.824 + 0.565i
Analytic cond. 8.704658.70465
Root an. cond. 8.704658.70465
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.597 − 0.802i)2-s + (−0.286 + 0.957i)4-s + (0.835 − 0.549i)5-s + (−0.686 + 0.727i)7-s + (0.939 − 0.342i)8-s + (−0.939 − 0.342i)10-s + (−0.893 + 0.448i)11-s + (0.396 + 0.918i)13-s + (0.993 + 0.116i)14-s + (−0.835 − 0.549i)16-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)19-s + (0.286 + 0.957i)20-s + (0.893 + 0.448i)22-s + (0.686 + 0.727i)23-s + ⋯
L(s)  = 1  + (−0.597 − 0.802i)2-s + (−0.286 + 0.957i)4-s + (0.835 − 0.549i)5-s + (−0.686 + 0.727i)7-s + (0.939 − 0.342i)8-s + (−0.939 − 0.342i)10-s + (−0.893 + 0.448i)11-s + (0.396 + 0.918i)13-s + (0.993 + 0.116i)14-s + (−0.835 − 0.549i)16-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)19-s + (0.286 + 0.957i)20-s + (0.893 + 0.448i)22-s + (0.686 + 0.727i)23-s + ⋯

Functional equation

Λ(s)=(81s/2ΓR(s+1)L(s)=((0.824+0.565i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(81s/2ΓR(s+1)L(s)=((0.824+0.565i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 8181    =    343^{4}
Sign: 0.824+0.565i0.824 + 0.565i
Analytic conductor: 8.704658.70465
Root analytic conductor: 8.704658.70465
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ81(68,)\chi_{81} (68, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 81, (1: ), 0.824+0.565i)(1,\ 81,\ (1:\ ),\ 0.824 + 0.565i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.9760299288+0.3025466108i0.9760299288 + 0.3025466108i
L(12)L(\frac12) \approx 0.9760299288+0.3025466108i0.9760299288 + 0.3025466108i
L(1)L(1) \approx 0.80794417530.07197521243i0.8079441753 - 0.07197521243i
L(1)L(1) \approx 0.80794417530.07197521243i0.8079441753 - 0.07197521243i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
good2 1+(0.5970.802i)T 1 + (-0.597 - 0.802i)T
5 1+(0.8350.549i)T 1 + (0.835 - 0.549i)T
7 1+(0.686+0.727i)T 1 + (-0.686 + 0.727i)T
11 1+(0.893+0.448i)T 1 + (-0.893 + 0.448i)T
13 1+(0.396+0.918i)T 1 + (0.396 + 0.918i)T
17 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
19 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
23 1+(0.686+0.727i)T 1 + (0.686 + 0.727i)T
29 1+(0.9930.116i)T 1 + (0.993 - 0.116i)T
31 1+(0.9730.230i)T 1 + (0.973 - 0.230i)T
37 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
41 1+(0.597+0.802i)T 1 + (-0.597 + 0.802i)T
43 1+(0.0581+0.998i)T 1 + (-0.0581 + 0.998i)T
47 1+(0.9730.230i)T 1 + (-0.973 - 0.230i)T
53 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
59 1+(0.8930.448i)T 1 + (-0.893 - 0.448i)T
61 1+(0.2860.957i)T 1 + (-0.286 - 0.957i)T
67 1+(0.9930.116i)T 1 + (-0.993 - 0.116i)T
71 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
73 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
79 1+(0.597+0.802i)T 1 + (0.597 + 0.802i)T
83 1+(0.5970.802i)T 1 + (-0.597 - 0.802i)T
89 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
97 1+(0.8350.549i)T 1 + (-0.835 - 0.549i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−30.55463942478311568961383795761, −29.19361747689156514954786803495, −28.6959252748132902641341021272, −26.99384793893313949832167616244, −26.36646503719704713137657689030, −25.4554003166452978293543696038, −24.460467170939492778447944503365, −23.12069585337849489293225532565, −22.37906745305228947569484813614, −20.73279498072467112898452206828, −19.506557378882574131707678850, −18.27108135323765144949354798261, −17.58405527164533911352253852073, −16.28922451668678074340387688471, −15.37388123011043664227372819935, −13.862211143333380928365328818428, −13.27021246328645089972948921031, −10.801563373123930192418421353665, −10.14416526923966496518898754766, −8.84865621804764099853288079429, −7.34002926327895227342633471542, −6.36143218570510640053509928465, −5.10118949560273703843638177535, −2.84394147514700377485976065657, −0.61684017480868729454737131053, 1.57357992113764614169910904856, 2.89286037731367279932198220096, 4.75632755644399388928709779207, 6.408036659739737929809163459415, 8.24718156052587009206979184742, 9.34232808102542672851006307127, 10.14987481997479060559164892399, 11.69810466184592313815299820453, 12.82857755815031678507427159084, 13.620657539978405722283504461513, 15.65641513437985504915760064119, 16.75132118564639655137684867754, 17.90306449617602486728740697731, 18.78002238721492769097944655769, 19.98237682009209999941887068652, 21.14821910864311992802782688073, 21.741903929909234895339865303299, 23.08708291159586995461294210357, 24.75279172770236171880721113663, 25.7226496993346751193287965480, 26.51199410488068123239624102965, 28.08692634695840246613963768419, 28.77688474477087338887608115724, 29.283562240495709088682048521451, 30.89310852338307113948718023381

Graph of the ZZ-function along the critical line