L(s) = 1 | + 3-s − 7-s + 9-s − 11-s + 13-s − 17-s − 19-s − 21-s − 23-s + 27-s − 29-s + 31-s − 33-s + 37-s + 39-s + 41-s + 43-s − 47-s + 49-s − 51-s + 53-s − 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + ⋯ |
L(s) = 1 | + 3-s − 7-s + 9-s − 11-s + 13-s − 17-s − 19-s − 21-s − 23-s + 27-s − 29-s + 31-s − 33-s + 37-s + 39-s + 41-s + 43-s − 47-s + 49-s − 51-s + 53-s − 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + ⋯ |
Λ(s)=(=(40s/2ΓR(s)L(s)Λ(1−s)
Λ(s)=(=(40s/2ΓR(s)L(s)Λ(1−s)
Degree: |
1 |
Conductor: |
40
= 23⋅5
|
Sign: |
1
|
Analytic conductor: |
0.185759 |
Root analytic conductor: |
0.185759 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ40(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(1, 40, (0: ), 1)
|
Particular Values
L(21) |
≈ |
0.9724888505 |
L(21) |
≈ |
0.9724888505 |
L(1) |
≈ |
1.150086522 |
L(1) |
≈ |
1.150086522 |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+T |
| 7 | 1−T |
| 11 | 1−T |
| 13 | 1+T |
| 17 | 1−T |
| 19 | 1−T |
| 23 | 1−T |
| 29 | 1−T |
| 31 | 1+T |
| 37 | 1+T |
| 41 | 1+T |
| 43 | 1+T |
| 47 | 1−T |
| 53 | 1+T |
| 59 | 1−T |
| 61 | 1−T |
| 67 | 1+T |
| 71 | 1+T |
| 73 | 1−T |
| 79 | 1+T |
| 83 | 1+T |
| 89 | 1+T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−35.46871815933931066557067894264, −33.77397195045299345934334946200, −32.48992182986535727451601240753, −31.65702877158575683499667689923, −30.53574562468521890003722781377, −29.2753109321509594977720938410, −27.96504990212936504067312446763, −26.2614027105047778869654803926, −25.87097298765072715474022116727, −24.43655444208668619202989797271, −23.088687094180323858461465199341, −21.56472815482081368499382900513, −20.40160148601184344649904072245, −19.28135808746821972149080789134, −18.18218004680212107005435911139, −16.16663433364409385216294347220, −15.2714728878515316883170383332, −13.60430796560710377807192393179, −12.81517863613023536936946170700, −10.63827697953891807504773945162, −9.28044435522920809581999772668, −7.98779634495761720535224006097, −6.33545319091356197519845871198, −4.03159701418841483370658989241, −2.48821020930540853564011047706,
2.48821020930540853564011047706, 4.03159701418841483370658989241, 6.33545319091356197519845871198, 7.98779634495761720535224006097, 9.28044435522920809581999772668, 10.63827697953891807504773945162, 12.81517863613023536936946170700, 13.60430796560710377807192393179, 15.2714728878515316883170383332, 16.16663433364409385216294347220, 18.18218004680212107005435911139, 19.28135808746821972149080789134, 20.40160148601184344649904072245, 21.56472815482081368499382900513, 23.088687094180323858461465199341, 24.43655444208668619202989797271, 25.87097298765072715474022116727, 26.2614027105047778869654803926, 27.96504990212936504067312446763, 29.2753109321509594977720938410, 30.53574562468521890003722781377, 31.65702877158575683499667689923, 32.48992182986535727451601240753, 33.77397195045299345934334946200, 35.46871815933931066557067894264