L(s) = 1 | + 3-s − 7-s + 9-s − 11-s + 13-s − 17-s − 19-s − 21-s − 23-s + 27-s − 29-s + 31-s − 33-s + 37-s + 39-s + 41-s + 43-s − 47-s + 49-s − 51-s + 53-s − 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + ⋯ |
L(s) = 1 | + 3-s − 7-s + 9-s − 11-s + 13-s − 17-s − 19-s − 21-s − 23-s + 27-s − 29-s + 31-s − 33-s + 37-s + 39-s + 41-s + 43-s − 47-s + 49-s − 51-s + 53-s − 57-s − 59-s − 61-s − 63-s + 67-s − 69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9724888505\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9724888505\) |
\(L(1)\) |
\(\approx\) |
\(1.150086522\) |
\(L(1)\) |
\(\approx\) |
\(1.150086522\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−35.46871815933931066557067894264, −33.77397195045299345934334946200, −32.48992182986535727451601240753, −31.65702877158575683499667689923, −30.53574562468521890003722781377, −29.2753109321509594977720938410, −27.96504990212936504067312446763, −26.2614027105047778869654803926, −25.87097298765072715474022116727, −24.43655444208668619202989797271, −23.088687094180323858461465199341, −21.56472815482081368499382900513, −20.40160148601184344649904072245, −19.28135808746821972149080789134, −18.18218004680212107005435911139, −16.16663433364409385216294347220, −15.2714728878515316883170383332, −13.60430796560710377807192393179, −12.81517863613023536936946170700, −10.63827697953891807504773945162, −9.28044435522920809581999772668, −7.98779634495761720535224006097, −6.33545319091356197519845871198, −4.03159701418841483370658989241, −2.48821020930540853564011047706,
2.48821020930540853564011047706, 4.03159701418841483370658989241, 6.33545319091356197519845871198, 7.98779634495761720535224006097, 9.28044435522920809581999772668, 10.63827697953891807504773945162, 12.81517863613023536936946170700, 13.60430796560710377807192393179, 15.2714728878515316883170383332, 16.16663433364409385216294347220, 18.18218004680212107005435911139, 19.28135808746821972149080789134, 20.40160148601184344649904072245, 21.56472815482081368499382900513, 23.088687094180323858461465199341, 24.43655444208668619202989797271, 25.87097298765072715474022116727, 26.2614027105047778869654803926, 27.96504990212936504067312446763, 29.2753109321509594977720938410, 30.53574562468521890003722781377, 31.65702877158575683499667689923, 32.48992182986535727451601240753, 33.77397195045299345934334946200, 35.46871815933931066557067894264