Properties

Label 1-403-403.178-r1-0-0
Degree 11
Conductor 403403
Sign 0.9790.201i-0.979 - 0.201i
Analytic cond. 43.308343.3083
Root an. cond. 43.308343.3083
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.104 + 0.994i)2-s + (−0.913 − 0.406i)3-s + (−0.978 − 0.207i)4-s + 5-s + (0.5 − 0.866i)6-s + (−0.978 − 0.207i)7-s + (0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (0.809 + 0.587i)12-s + (0.309 − 0.951i)14-s + (−0.913 − 0.406i)15-s + (0.913 + 0.406i)16-s + (−0.669 − 0.743i)17-s + (−0.809 + 0.587i)18-s + ⋯
L(s)  = 1  + (−0.104 + 0.994i)2-s + (−0.913 − 0.406i)3-s + (−0.978 − 0.207i)4-s + 5-s + (0.5 − 0.866i)6-s + (−0.978 − 0.207i)7-s + (0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (0.809 + 0.587i)12-s + (0.309 − 0.951i)14-s + (−0.913 − 0.406i)15-s + (0.913 + 0.406i)16-s + (−0.669 − 0.743i)17-s + (−0.809 + 0.587i)18-s + ⋯

Functional equation

Λ(s)=(403s/2ΓR(s+1)L(s)=((0.9790.201i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.979 - 0.201i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(403s/2ΓR(s+1)L(s)=((0.9790.201i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.979 - 0.201i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 403403    =    133113 \cdot 31
Sign: 0.9790.201i-0.979 - 0.201i
Analytic conductor: 43.308343.3083
Root analytic conductor: 43.308343.3083
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ403(178,)\chi_{403} (178, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 403, (1: ), 0.9790.201i)(1,\ 403,\ (1:\ ),\ -0.979 - 0.201i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.03124287472+0.3070076447i0.03124287472 + 0.3070076447i
L(12)L(\frac12) \approx 0.03124287472+0.3070076447i0.03124287472 + 0.3070076447i
L(1)L(1) \approx 0.5959907302+0.2324691559i0.5959907302 + 0.2324691559i
L(1)L(1) \approx 0.5959907302+0.2324691559i0.5959907302 + 0.2324691559i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
31 1 1
good2 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
3 1+(0.9130.406i)T 1 + (-0.913 - 0.406i)T
5 1+T 1 + T
7 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
11 1+(0.669+0.743i)T 1 + (-0.669 + 0.743i)T
17 1+(0.6690.743i)T 1 + (-0.669 - 0.743i)T
19 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
23 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
29 1+(0.1040.994i)T 1 + (0.104 - 0.994i)T
37 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
41 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
43 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
47 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
53 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
59 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
61 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
67 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
71 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
73 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
79 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
83 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
89 1+(0.669+0.743i)T 1 + (-0.669 + 0.743i)T
97 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.33008327754312509962339105906, −22.49336614133212433913430252320, −21.841990480314969674514704357779, −21.31645472294812466824322723272, −20.40737763952172023651794718947, −19.241924754816633096678284840202, −18.37789758403356389938895569533, −17.74515828768417873169262601136, −16.77523073390281856538583070712, −16.076524059850168413263838395928, −14.74618141364820622903516733695, −13.393614696974314750499006184741, −12.98570869935245494050490220815, −11.99174248497260522651819795018, −10.87389426309414147322233869729, −10.31924744798611734638725985495, −9.47620901018364957608607690836, −8.69469836874782113447392158774, −6.90421478098786356905532452132, −5.73062015322129168215129252131, −5.19158352497756472730686225829, −3.739849394687899799358038533121, −2.79481596241504686818159960394, −1.382632805470570639198332168036, −0.11662047496213342066576269023, 1.11916401882380562227293641693, 2.760434460774902368482674136655, 4.657780920048784338528417660, 5.28412659525794027190793181081, 6.43387317834153635405352521057, 6.82240656691398790550061405258, 7.89996830407025391701181342844, 9.51433636549621085687920151650, 9.81927573834122808523850169247, 11.01065177100901060078653989753, 12.48901955561422422790108985321, 13.28734573995665854817722271274, 13.66806454197636203455517613545, 15.15122624651895233622541031119, 16.01252209885314902219761206329, 16.76927906136454112568778819272, 17.54613606635941928073127394841, 18.202915878002825768335005250949, 18.90217806089174638469667345546, 20.201141052037175835477552558528, 21.53244381641270075405710088661, 22.411533776123812597005605938781, 22.872209160968902184304192572064, 23.70682000153099927165354104481, 24.8160934920953562671123349750

Graph of the ZZ-function along the critical line