L(s) = 1 | + (−0.104 + 0.994i)2-s + (−0.913 − 0.406i)3-s + (−0.978 − 0.207i)4-s + 5-s + (0.5 − 0.866i)6-s + (−0.978 − 0.207i)7-s + (0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (0.809 + 0.587i)12-s + (0.309 − 0.951i)14-s + (−0.913 − 0.406i)15-s + (0.913 + 0.406i)16-s + (−0.669 − 0.743i)17-s + (−0.809 + 0.587i)18-s + ⋯ |
L(s) = 1 | + (−0.104 + 0.994i)2-s + (−0.913 − 0.406i)3-s + (−0.978 − 0.207i)4-s + 5-s + (0.5 − 0.866i)6-s + (−0.978 − 0.207i)7-s + (0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (0.809 + 0.587i)12-s + (0.309 − 0.951i)14-s + (−0.913 − 0.406i)15-s + (0.913 + 0.406i)16-s + (−0.669 − 0.743i)17-s + (−0.809 + 0.587i)18-s + ⋯ |
Λ(s)=(=(403s/2ΓR(s+1)L(s)(−0.979−0.201i)Λ(1−s)
Λ(s)=(=(403s/2ΓR(s+1)L(s)(−0.979−0.201i)Λ(1−s)
Degree: |
1 |
Conductor: |
403
= 13⋅31
|
Sign: |
−0.979−0.201i
|
Analytic conductor: |
43.3083 |
Root analytic conductor: |
43.3083 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ403(178,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 403, (1: ), −0.979−0.201i)
|
Particular Values
L(21) |
≈ |
0.03124287472+0.3070076447i |
L(21) |
≈ |
0.03124287472+0.3070076447i |
L(1) |
≈ |
0.5959907302+0.2324691559i |
L(1) |
≈ |
0.5959907302+0.2324691559i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
| 31 | 1 |
good | 2 | 1+(−0.104+0.994i)T |
| 3 | 1+(−0.913−0.406i)T |
| 5 | 1+T |
| 7 | 1+(−0.978−0.207i)T |
| 11 | 1+(−0.669+0.743i)T |
| 17 | 1+(−0.669−0.743i)T |
| 19 | 1+(0.913−0.406i)T |
| 23 | 1+(0.978−0.207i)T |
| 29 | 1+(0.104−0.994i)T |
| 37 | 1+(0.5+0.866i)T |
| 41 | 1+(−0.104+0.994i)T |
| 43 | 1+(−0.913+0.406i)T |
| 47 | 1+(−0.809+0.587i)T |
| 53 | 1+(−0.309+0.951i)T |
| 59 | 1+(−0.104−0.994i)T |
| 61 | 1+(0.5−0.866i)T |
| 67 | 1+(−0.5−0.866i)T |
| 71 | 1+(0.669+0.743i)T |
| 73 | 1+(−0.309−0.951i)T |
| 79 | 1+(−0.309+0.951i)T |
| 83 | 1+(0.809+0.587i)T |
| 89 | 1+(−0.669+0.743i)T |
| 97 | 1+(−0.978−0.207i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.33008327754312509962339105906, −22.49336614133212433913430252320, −21.841990480314969674514704357779, −21.31645472294812466824322723272, −20.40737763952172023651794718947, −19.241924754816633096678284840202, −18.37789758403356389938895569533, −17.74515828768417873169262601136, −16.77523073390281856538583070712, −16.076524059850168413263838395928, −14.74618141364820622903516733695, −13.393614696974314750499006184741, −12.98570869935245494050490220815, −11.99174248497260522651819795018, −10.87389426309414147322233869729, −10.31924744798611734638725985495, −9.47620901018364957608607690836, −8.69469836874782113447392158774, −6.90421478098786356905532452132, −5.73062015322129168215129252131, −5.19158352497756472730686225829, −3.739849394687899799358038533121, −2.79481596241504686818159960394, −1.382632805470570639198332168036, −0.11662047496213342066576269023,
1.11916401882380562227293641693, 2.760434460774902368482674136655, 4.657780920048784338528417660, 5.28412659525794027190793181081, 6.43387317834153635405352521057, 6.82240656691398790550061405258, 7.89996830407025391701181342844, 9.51433636549621085687920151650, 9.81927573834122808523850169247, 11.01065177100901060078653989753, 12.48901955561422422790108985321, 13.28734573995665854817722271274, 13.66806454197636203455517613545, 15.15122624651895233622541031119, 16.01252209885314902219761206329, 16.76927906136454112568778819272, 17.54613606635941928073127394841, 18.202915878002825768335005250949, 18.90217806089174638469667345546, 20.201141052037175835477552558528, 21.53244381641270075405710088661, 22.411533776123812597005605938781, 22.872209160968902184304192572064, 23.70682000153099927165354104481, 24.8160934920953562671123349750