L(s) = 1 | + (0.448 − 0.893i)2-s + (−0.597 − 0.802i)4-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.973 − 0.230i)11-s + (0.549 − 0.835i)13-s + (0.0581 − 0.998i)14-s + (−0.286 + 0.957i)16-s + (0.342 + 0.939i)17-s + (0.939 + 0.342i)19-s + (0.230 − 0.973i)22-s + (0.918 + 0.396i)23-s + (−0.5 − 0.866i)26-s + (−0.866 − 0.5i)28-s + (0.0581 + 0.998i)29-s + ⋯ |
L(s) = 1 | + (0.448 − 0.893i)2-s + (−0.597 − 0.802i)4-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.973 − 0.230i)11-s + (0.549 − 0.835i)13-s + (0.0581 − 0.998i)14-s + (−0.286 + 0.957i)16-s + (0.342 + 0.939i)17-s + (0.939 + 0.342i)19-s + (0.230 − 0.973i)22-s + (0.918 + 0.396i)23-s + (−0.5 − 0.866i)26-s + (−0.866 − 0.5i)28-s + (0.0581 + 0.998i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.222 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.222 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.903235012 - 2.385361490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.903235012 - 2.385361490i\) |
\(L(1)\) |
\(\approx\) |
\(1.321585226 - 0.8918795715i\) |
\(L(1)\) |
\(\approx\) |
\(1.321585226 - 0.8918795715i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.448 - 0.893i)T \) |
| 7 | \( 1 + (0.918 - 0.396i)T \) |
| 11 | \( 1 + (0.973 - 0.230i)T \) |
| 13 | \( 1 + (0.549 - 0.835i)T \) |
| 17 | \( 1 + (0.342 + 0.939i)T \) |
| 19 | \( 1 + (0.939 + 0.342i)T \) |
| 23 | \( 1 + (0.918 + 0.396i)T \) |
| 29 | \( 1 + (0.0581 + 0.998i)T \) |
| 31 | \( 1 + (-0.993 + 0.116i)T \) |
| 37 | \( 1 + (0.642 - 0.766i)T \) |
| 41 | \( 1 + (0.893 - 0.448i)T \) |
| 43 | \( 1 + (0.727 - 0.686i)T \) |
| 47 | \( 1 + (-0.116 + 0.993i)T \) |
| 53 | \( 1 + (-0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.973 - 0.230i)T \) |
| 61 | \( 1 + (0.597 - 0.802i)T \) |
| 67 | \( 1 + (0.998 + 0.0581i)T \) |
| 71 | \( 1 + (0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.984 + 0.173i)T \) |
| 79 | \( 1 + (-0.893 - 0.448i)T \) |
| 83 | \( 1 + (-0.448 + 0.893i)T \) |
| 89 | \( 1 + (-0.173 - 0.984i)T \) |
| 97 | \( 1 + (0.957 + 0.286i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.61351622877759719633700384512, −23.54687696674505643735045665588, −22.77229363894549120613295972805, −21.89959701665566896328585208392, −21.11726306277560775980800179844, −20.2881013602629235076987907464, −18.81843323730074198516218671417, −18.13936810125737522703692258561, −17.22360499601273444348262941722, −16.43411919556334346969318885875, −15.52253920867867399832657898327, −14.53867567348668580098993593297, −14.0758742401080749528406204442, −13.01609956761127254190337829597, −11.78551492553335542461032517408, −11.38527568531060446039342826802, −9.48937360873938660619203986090, −8.91084698264302721816338296328, −7.78392067303149900823715512610, −6.94054227861887027844088625362, −5.91229253791907638464248670565, −4.88231637820617773603907516005, −4.08846384034406110017309535214, −2.74405259841490453625342685906, −1.13368954687407811887427042868,
0.92799652665219963268219076857, 1.65296607103442462637869072932, 3.24527373132288084983876647234, 3.983325556253383820865338334, 5.17736821340652746368039436867, 6.000849138854382651638196896980, 7.47217906890890666010048912891, 8.61379441089391490983244351600, 9.5242239677856388592457947779, 10.79330066317575740457537683786, 11.13462563816737620076494769782, 12.29625809296963884989398512155, 13.067422328600059780644860723397, 14.26866098396181255854327654986, 14.55583568188087203568682104233, 15.796167219953215000072594270650, 17.142722723549748630617479868542, 17.86251764735805503095072669894, 18.79139260913617078928769949422, 19.78011073723569140674738550981, 20.423557716134823258524055673507, 21.241635975870125206654482174502, 22.05105114436908620429773730793, 22.9157664547310643337096951101, 23.7256997368704793127271644516