L(s) = 1 | + (0.448 − 0.893i)2-s + (−0.597 − 0.802i)4-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.973 − 0.230i)11-s + (0.549 − 0.835i)13-s + (0.0581 − 0.998i)14-s + (−0.286 + 0.957i)16-s + (0.342 + 0.939i)17-s + (0.939 + 0.342i)19-s + (0.230 − 0.973i)22-s + (0.918 + 0.396i)23-s + (−0.5 − 0.866i)26-s + (−0.866 − 0.5i)28-s + (0.0581 + 0.998i)29-s + ⋯ |
L(s) = 1 | + (0.448 − 0.893i)2-s + (−0.597 − 0.802i)4-s + (0.918 − 0.396i)7-s + (−0.984 + 0.173i)8-s + (0.973 − 0.230i)11-s + (0.549 − 0.835i)13-s + (0.0581 − 0.998i)14-s + (−0.286 + 0.957i)16-s + (0.342 + 0.939i)17-s + (0.939 + 0.342i)19-s + (0.230 − 0.973i)22-s + (0.918 + 0.396i)23-s + (−0.5 − 0.866i)26-s + (−0.866 − 0.5i)28-s + (0.0581 + 0.998i)29-s + ⋯ |
Λ(s)=(=(405s/2ΓR(s+1)L(s)(−0.222−0.975i)Λ(1−s)
Λ(s)=(=(405s/2ΓR(s+1)L(s)(−0.222−0.975i)Λ(1−s)
Degree: |
1 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.222−0.975i
|
Analytic conductor: |
43.5232 |
Root analytic conductor: |
43.5232 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(178,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 405, (1: ), −0.222−0.975i)
|
Particular Values
L(21) |
≈ |
1.903235012−2.385361490i |
L(21) |
≈ |
1.903235012−2.385361490i |
L(1) |
≈ |
1.321585226−0.8918795715i |
L(1) |
≈ |
1.321585226−0.8918795715i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(0.448−0.893i)T |
| 7 | 1+(0.918−0.396i)T |
| 11 | 1+(0.973−0.230i)T |
| 13 | 1+(0.549−0.835i)T |
| 17 | 1+(0.342+0.939i)T |
| 19 | 1+(0.939+0.342i)T |
| 23 | 1+(0.918+0.396i)T |
| 29 | 1+(0.0581+0.998i)T |
| 31 | 1+(−0.993+0.116i)T |
| 37 | 1+(0.642−0.766i)T |
| 41 | 1+(0.893−0.448i)T |
| 43 | 1+(0.727−0.686i)T |
| 47 | 1+(−0.116+0.993i)T |
| 53 | 1+(−0.866−0.5i)T |
| 59 | 1+(−0.973−0.230i)T |
| 61 | 1+(0.597−0.802i)T |
| 67 | 1+(0.998+0.0581i)T |
| 71 | 1+(0.173−0.984i)T |
| 73 | 1+(−0.984+0.173i)T |
| 79 | 1+(−0.893−0.448i)T |
| 83 | 1+(−0.448+0.893i)T |
| 89 | 1+(−0.173−0.984i)T |
| 97 | 1+(0.957+0.286i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.61351622877759719633700384512, −23.54687696674505643735045665588, −22.77229363894549120613295972805, −21.89959701665566896328585208392, −21.11726306277560775980800179844, −20.2881013602629235076987907464, −18.81843323730074198516218671417, −18.13936810125737522703692258561, −17.22360499601273444348262941722, −16.43411919556334346969318885875, −15.52253920867867399832657898327, −14.53867567348668580098993593297, −14.0758742401080749528406204442, −13.01609956761127254190337829597, −11.78551492553335542461032517408, −11.38527568531060446039342826802, −9.48937360873938660619203986090, −8.91084698264302721816338296328, −7.78392067303149900823715512610, −6.94054227861887027844088625362, −5.91229253791907638464248670565, −4.88231637820617773603907516005, −4.08846384034406110017309535214, −2.74405259841490453625342685906, −1.13368954687407811887427042868,
0.92799652665219963268219076857, 1.65296607103442462637869072932, 3.24527373132288084983876647234, 3.983325556253383820865338334, 5.17736821340652746368039436867, 6.000849138854382651638196896980, 7.47217906890890666010048912891, 8.61379441089391490983244351600, 9.5242239677856388592457947779, 10.79330066317575740457537683786, 11.13462563816737620076494769782, 12.29625809296963884989398512155, 13.067422328600059780644860723397, 14.26866098396181255854327654986, 14.55583568188087203568682104233, 15.796167219953215000072594270650, 17.142722723549748630617479868542, 17.86251764735805503095072669894, 18.79139260913617078928769949422, 19.78011073723569140674738550981, 20.423557716134823258524055673507, 21.241635975870125206654482174502, 22.05105114436908620429773730793, 22.9157664547310643337096951101, 23.7256997368704793127271644516