Properties

Label 1-4140-4140.1499-r0-0-0
Degree 11
Conductor 41404140
Sign 0.452+0.891i0.452 + 0.891i
Analytic cond. 19.226019.2260
Root an. cond. 19.226019.2260
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.235 − 0.971i)7-s + (0.981 − 0.189i)11-s + (−0.235 − 0.971i)13-s + (−0.142 + 0.989i)17-s + (0.142 + 0.989i)19-s + (0.786 + 0.618i)29-s + (−0.0475 + 0.998i)31-s + (−0.415 + 0.909i)37-s + (−0.580 + 0.814i)41-s + (0.0475 + 0.998i)43-s + (0.5 − 0.866i)47-s + (−0.888 − 0.458i)49-s + (−0.959 + 0.281i)53-s + (0.235 + 0.971i)59-s + (−0.888 + 0.458i)61-s + ⋯
L(s)  = 1  + (0.235 − 0.971i)7-s + (0.981 − 0.189i)11-s + (−0.235 − 0.971i)13-s + (−0.142 + 0.989i)17-s + (0.142 + 0.989i)19-s + (0.786 + 0.618i)29-s + (−0.0475 + 0.998i)31-s + (−0.415 + 0.909i)37-s + (−0.580 + 0.814i)41-s + (0.0475 + 0.998i)43-s + (0.5 − 0.866i)47-s + (−0.888 − 0.458i)49-s + (−0.959 + 0.281i)53-s + (0.235 + 0.971i)59-s + (−0.888 + 0.458i)61-s + ⋯

Functional equation

Λ(s)=(4140s/2ΓR(s)L(s)=((0.452+0.891i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.452 + 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(4140s/2ΓR(s)L(s)=((0.452+0.891i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.452 + 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 41404140    =    22325232^{2} \cdot 3^{2} \cdot 5 \cdot 23
Sign: 0.452+0.891i0.452 + 0.891i
Analytic conductor: 19.226019.2260
Root analytic conductor: 19.226019.2260
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ4140(1499,)\chi_{4140} (1499, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 4140, (0: ), 0.452+0.891i)(1,\ 4140,\ (0:\ ),\ 0.452 + 0.891i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.276312637+0.7838063899i1.276312637 + 0.7838063899i
L(12)L(\frac12) \approx 1.276312637+0.7838063899i1.276312637 + 0.7838063899i
L(1)L(1) \approx 1.086526073+0.03984789521i1.086526073 + 0.03984789521i
L(1)L(1) \approx 1.086526073+0.03984789521i1.086526073 + 0.03984789521i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1 1
23 1 1
good7 1+(0.2350.971i)T 1 + (0.235 - 0.971i)T
11 1+(0.9810.189i)T 1 + (0.981 - 0.189i)T
13 1+(0.2350.971i)T 1 + (-0.235 - 0.971i)T
17 1+(0.142+0.989i)T 1 + (-0.142 + 0.989i)T
19 1+(0.142+0.989i)T 1 + (0.142 + 0.989i)T
29 1+(0.786+0.618i)T 1 + (0.786 + 0.618i)T
31 1+(0.0475+0.998i)T 1 + (-0.0475 + 0.998i)T
37 1+(0.415+0.909i)T 1 + (-0.415 + 0.909i)T
41 1+(0.580+0.814i)T 1 + (-0.580 + 0.814i)T
43 1+(0.0475+0.998i)T 1 + (0.0475 + 0.998i)T
47 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
53 1+(0.959+0.281i)T 1 + (-0.959 + 0.281i)T
59 1+(0.235+0.971i)T 1 + (0.235 + 0.971i)T
61 1+(0.888+0.458i)T 1 + (-0.888 + 0.458i)T
67 1+(0.981+0.189i)T 1 + (0.981 + 0.189i)T
71 1+(0.654+0.755i)T 1 + (-0.654 + 0.755i)T
73 1+(0.142+0.989i)T 1 + (0.142 + 0.989i)T
79 1+(0.723+0.690i)T 1 + (-0.723 + 0.690i)T
83 1+(0.5800.814i)T 1 + (-0.580 - 0.814i)T
89 1+(0.841+0.540i)T 1 + (-0.841 + 0.540i)T
97 1+(0.995+0.0950i)T 1 + (0.995 + 0.0950i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.36318264451610880363331900369, −17.49943338973940808113551118077, −17.13785623468506919137323638800, −16.13434851110976604983562635952, −15.61071610122695426027317986786, −14.96135221090334305802603573658, −14.083177148338676511055488810276, −13.81419008938953098008693652420, −12.68198835606972082519150543303, −12.02587619878872739420419854838, −11.56292211323144381855716181784, −10.95936934810370281957639976531, −9.77505897623810473826923568425, −9.2046038858186683368360049346, −8.86012905413665500690567402974, −7.84100862052483346730248034277, −7.00167020438468934927318039191, −6.45938519603067172163931640080, −5.5919804539826234041221609084, −4.779588610014885557326424330234, −4.20923509785882775673818912033, −3.15550726449791767278004112315, −2.30251977223431195130074406722, −1.720331980772165440144520559572, −0.42893766534066000426094692693, 1.17186934969097970375708322046, 1.46826259202924900119612948461, 2.88811457537181326895813042521, 3.57112129719807060566792193555, 4.257197965633711551417314376910, 5.05259501088911317002998733255, 5.9584263747934967972009550120, 6.65533929090488701831878944141, 7.342887364262120968367615322934, 8.24489739411069971120002796300, 8.59218471134142895247771882467, 9.80065433172713245206260746955, 10.26261252913858106929053697228, 10.87557945092199200308850142171, 11.71182596359952758084170964234, 12.42456413460181637992486165690, 13.06021519657474336076790196352, 13.89486370629278589544412271948, 14.43949509854969481664143236299, 15.00406262943093194791199102360, 15.895455507133109406584820518048, 16.65959765212562365756271027206, 17.16951555168700342680013405065, 17.70728283032243151673033203135, 18.49332180766589873701774843263

Graph of the ZZ-function along the critical line