L(s) = 1 | + (0.235 − 0.971i)7-s + (0.981 − 0.189i)11-s + (−0.235 − 0.971i)13-s + (−0.142 + 0.989i)17-s + (0.142 + 0.989i)19-s + (0.786 + 0.618i)29-s + (−0.0475 + 0.998i)31-s + (−0.415 + 0.909i)37-s + (−0.580 + 0.814i)41-s + (0.0475 + 0.998i)43-s + (0.5 − 0.866i)47-s + (−0.888 − 0.458i)49-s + (−0.959 + 0.281i)53-s + (0.235 + 0.971i)59-s + (−0.888 + 0.458i)61-s + ⋯ |
L(s) = 1 | + (0.235 − 0.971i)7-s + (0.981 − 0.189i)11-s + (−0.235 − 0.971i)13-s + (−0.142 + 0.989i)17-s + (0.142 + 0.989i)19-s + (0.786 + 0.618i)29-s + (−0.0475 + 0.998i)31-s + (−0.415 + 0.909i)37-s + (−0.580 + 0.814i)41-s + (0.0475 + 0.998i)43-s + (0.5 − 0.866i)47-s + (−0.888 − 0.458i)49-s + (−0.959 + 0.281i)53-s + (0.235 + 0.971i)59-s + (−0.888 + 0.458i)61-s + ⋯ |
Λ(s)=(=(4140s/2ΓR(s)L(s)(0.452+0.891i)Λ(1−s)
Λ(s)=(=(4140s/2ΓR(s)L(s)(0.452+0.891i)Λ(1−s)
Degree: |
1 |
Conductor: |
4140
= 22⋅32⋅5⋅23
|
Sign: |
0.452+0.891i
|
Analytic conductor: |
19.2260 |
Root analytic conductor: |
19.2260 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4140(1499,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 4140, (0: ), 0.452+0.891i)
|
Particular Values
L(21) |
≈ |
1.276312637+0.7838063899i |
L(21) |
≈ |
1.276312637+0.7838063899i |
L(1) |
≈ |
1.086526073+0.03984789521i |
L(1) |
≈ |
1.086526073+0.03984789521i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
| 23 | 1 |
good | 7 | 1+(0.235−0.971i)T |
| 11 | 1+(0.981−0.189i)T |
| 13 | 1+(−0.235−0.971i)T |
| 17 | 1+(−0.142+0.989i)T |
| 19 | 1+(0.142+0.989i)T |
| 29 | 1+(0.786+0.618i)T |
| 31 | 1+(−0.0475+0.998i)T |
| 37 | 1+(−0.415+0.909i)T |
| 41 | 1+(−0.580+0.814i)T |
| 43 | 1+(0.0475+0.998i)T |
| 47 | 1+(0.5−0.866i)T |
| 53 | 1+(−0.959+0.281i)T |
| 59 | 1+(0.235+0.971i)T |
| 61 | 1+(−0.888+0.458i)T |
| 67 | 1+(0.981+0.189i)T |
| 71 | 1+(−0.654+0.755i)T |
| 73 | 1+(0.142+0.989i)T |
| 79 | 1+(−0.723+0.690i)T |
| 83 | 1+(−0.580−0.814i)T |
| 89 | 1+(−0.841+0.540i)T |
| 97 | 1+(0.995+0.0950i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.36318264451610880363331900369, −17.49943338973940808113551118077, −17.13785623468506919137323638800, −16.13434851110976604983562635952, −15.61071610122695426027317986786, −14.96135221090334305802603573658, −14.083177148338676511055488810276, −13.81419008938953098008693652420, −12.68198835606972082519150543303, −12.02587619878872739420419854838, −11.56292211323144381855716181784, −10.95936934810370281957639976531, −9.77505897623810473826923568425, −9.2046038858186683368360049346, −8.86012905413665500690567402974, −7.84100862052483346730248034277, −7.00167020438468934927318039191, −6.45938519603067172163931640080, −5.5919804539826234041221609084, −4.779588610014885557326424330234, −4.20923509785882775673818912033, −3.15550726449791767278004112315, −2.30251977223431195130074406722, −1.720331980772165440144520559572, −0.42893766534066000426094692693,
1.17186934969097970375708322046, 1.46826259202924900119612948461, 2.88811457537181326895813042521, 3.57112129719807060566792193555, 4.257197965633711551417314376910, 5.05259501088911317002998733255, 5.9584263747934967972009550120, 6.65533929090488701831878944141, 7.342887364262120968367615322934, 8.24489739411069971120002796300, 8.59218471134142895247771882467, 9.80065433172713245206260746955, 10.26261252913858106929053697228, 10.87557945092199200308850142171, 11.71182596359952758084170964234, 12.42456413460181637992486165690, 13.06021519657474336076790196352, 13.89486370629278589544412271948, 14.43949509854969481664143236299, 15.00406262943093194791199102360, 15.895455507133109406584820518048, 16.65959765212562365756271027206, 17.16951555168700342680013405065, 17.70728283032243151673033203135, 18.49332180766589873701774843263