L(s) = 1 | + (0.608 − 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s + i·15-s + (0.866 − 0.5i)17-s + (0.130 − 0.991i)19-s + (0.258 + 0.965i)23-s + (0.258 − 0.965i)25-s + (−0.923 − 0.382i)27-s + (0.382 + 0.923i)29-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)33-s + (−0.793 + 0.608i)37-s + ⋯ |
L(s) = 1 | + (0.608 − 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s + i·15-s + (0.866 − 0.5i)17-s + (0.130 − 0.991i)19-s + (0.258 + 0.965i)23-s + (0.258 − 0.965i)25-s + (−0.923 − 0.382i)27-s + (0.382 + 0.923i)29-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)33-s + (−0.793 + 0.608i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.955 + 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.955 + 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.05550970081 - 0.3689407831i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.05550970081 - 0.3689407831i\) |
\(L(1)\) |
\(\approx\) |
\(0.8895647157 - 0.2409906112i\) |
\(L(1)\) |
\(\approx\) |
\(0.8895647157 - 0.2409906112i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.608 - 0.793i)T \) |
| 5 | \( 1 + (-0.793 + 0.608i)T \) |
| 11 | \( 1 + (-0.991 + 0.130i)T \) |
| 13 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.130 - 0.991i)T \) |
| 23 | \( 1 + (0.258 + 0.965i)T \) |
| 29 | \( 1 + (0.382 + 0.923i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.793 + 0.608i)T \) |
| 41 | \( 1 + (-0.707 + 0.707i)T \) |
| 43 | \( 1 + (-0.382 + 0.923i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.991 + 0.130i)T \) |
| 59 | \( 1 + (-0.130 - 0.991i)T \) |
| 61 | \( 1 + (-0.991 - 0.130i)T \) |
| 67 | \( 1 + (-0.608 + 0.793i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (-0.965 - 0.258i)T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 + (-0.923 + 0.382i)T \) |
| 89 | \( 1 + (0.965 - 0.258i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.24563850253877180855659574347, −23.33134907699755213646677598102, −22.69555765883932748063407813790, −21.26810162952520828559651306354, −20.94142661320427949470791928338, −20.17783813785894052535757751795, −19.124288797681558246652787115145, −18.58216833221244129432238321258, −17.04040951983722662778029056886, −16.19293143926940080857128331241, −15.772154647080950614926602388207, −14.782990737848933162459154576616, −13.88920276096920045541272590665, −12.88813794101112799608368262690, −11.95293901564504722348889690284, −10.78203049880714527966960637792, −10.15214939256587009685910446417, −8.83691981535194550486461107419, −8.31882947363972465259445815593, −7.47260874372959525277329074642, −5.82824153968301976699010254302, −4.85831174730109996648278028384, −3.887145872969541022817114133739, −3.11966934671431905001849969167, −1.59431096980984718142311351891,
0.08999905859207553216574115552, 1.43610000062465562158171005714, 2.96665375341500324763864592027, 3.3450962670397629741230629247, 4.938640394563178200953655259506, 6.23186690566686091259078406412, 7.27078919408517300290836250701, 7.84256600341177834053287787516, 8.73097253497320050729068280212, 9.94819565723532180812501925619, 11.09084804447802483229671911643, 11.83142717778900542939811646266, 12.9504358614471800855955876506, 13.57368330201616099989507496281, 14.636770175596803043476154317, 15.39525899992975950361451946518, 16.140073906336520904278088216121, 17.63096934462669825240622773556, 18.38833815278955724374055600466, 18.88997399840896482721930214086, 19.88669488740148246427275332206, 20.522387123570902666828106114674, 21.5257814790876111214011047313, 22.77727318835814174451938066402, 23.508323431670134043208621424454