Properties

Label 1-448-448.123-r1-0-0
Degree 11
Conductor 448448
Sign 0.848+0.529i0.848 + 0.529i
Analytic cond. 48.144248.1442
Root an. cond. 48.144248.1442
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.608 + 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s i·15-s + (−0.866 + 0.5i)17-s + (−0.130 + 0.991i)19-s + (−0.258 − 0.965i)23-s + (0.258 − 0.965i)25-s + (0.923 + 0.382i)27-s + (−0.382 − 0.923i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)33-s + (0.793 − 0.608i)37-s + ⋯
L(s)  = 1  + (−0.608 + 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s i·15-s + (−0.866 + 0.5i)17-s + (−0.130 + 0.991i)19-s + (−0.258 − 0.965i)23-s + (0.258 − 0.965i)25-s + (0.923 + 0.382i)27-s + (−0.382 − 0.923i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)33-s + (0.793 − 0.608i)37-s + ⋯

Functional equation

Λ(s)=(448s/2ΓR(s+1)L(s)=((0.848+0.529i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(448s/2ΓR(s+1)L(s)=((0.848+0.529i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 448448    =    2672^{6} \cdot 7
Sign: 0.848+0.529i0.848 + 0.529i
Analytic conductor: 48.144248.1442
Root analytic conductor: 48.144248.1442
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ448(123,)\chi_{448} (123, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 448, (1: ), 0.848+0.529i)(1,\ 448,\ (1:\ ),\ 0.848 + 0.529i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.8108924625+0.2324727159i0.8108924625 + 0.2324727159i
L(12)L(\frac12) \approx 0.8108924625+0.2324727159i0.8108924625 + 0.2324727159i
L(1)L(1) \approx 0.6531261590+0.1933475929i0.6531261590 + 0.1933475929i
L(1)L(1) \approx 0.6531261590+0.1933475929i0.6531261590 + 0.1933475929i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
good3 1+(0.608+0.793i)T 1 + (-0.608 + 0.793i)T
5 1+(0.793+0.608i)T 1 + (-0.793 + 0.608i)T
11 1+(0.991+0.130i)T 1 + (-0.991 + 0.130i)T
13 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
17 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
19 1+(0.130+0.991i)T 1 + (-0.130 + 0.991i)T
23 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
29 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
31 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
37 1+(0.7930.608i)T 1 + (0.793 - 0.608i)T
41 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
43 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
47 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
53 1+(0.9910.130i)T 1 + (0.991 - 0.130i)T
59 1+(0.130+0.991i)T 1 + (0.130 + 0.991i)T
61 1+(0.9910.130i)T 1 + (-0.991 - 0.130i)T
67 1+(0.608+0.793i)T 1 + (-0.608 + 0.793i)T
71 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
73 1+(0.965+0.258i)T 1 + (0.965 + 0.258i)T
79 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
83 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
89 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
97 1T 1 - T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.72377529339314307276528801572, −23.214690377407588393153951261184, −22.13277905389046166416220750635, −21.172439134391243625146339611649, −20.061072818438110145553377360586, −19.48999869298299198905913252089, −18.35989839464557528641312246880, −17.933465672022212503700505371328, −16.6911639072209400985656927979, −16.03832051042465830379975428445, −15.28563816089794929682264582818, −13.68784843335169083442857119695, −13.17640217989640987888748193653, −12.304806347259675178364107962674, −11.26672207931549460397397330307, −10.905525188790872811587906480487, −9.22049249723522403710432739425, −8.3077016639637478993438724193, −7.46061175140618142758118402415, −6.56696330197112405087988331027, −5.35550422506149971315569688708, −4.607803652274417876035995432293, −3.185873856254618456464610614333, −1.77445597839355360089503639784, −0.57524603389849208327274870190, 0.456090383165831825666249144796, 2.44985237270969219583861438452, 3.72327503358426037094644436393, 4.33612633570910928352953704350, 5.67984669975944607109705536496, 6.42782569272863542957928836599, 7.74149301691719577628982921675, 8.56106540198448553692648459894, 9.90063591484713586622685031202, 10.733145407655266375647592504834, 11.2072692119241006565651243728, 12.29566838536251912511906972646, 13.24461662465121636394851748391, 14.656303800090143766350273856015, 15.2636524125537110071219859748, 16.01031627153552984452380519076, 16.73304140434953189478837920217, 18.068369678696432250891660400768, 18.409195348631395647816028702391, 19.67816224615864485187695730208, 20.622773409256521871335476487426, 21.26724241857181562292025659127, 22.40412236648902851105890480028, 22.91900387131658110738533859377, 23.56763464852258809496875884796

Graph of the ZZ-function along the critical line