L(s) = 1 | + (−0.608 + 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s − i·15-s + (−0.866 + 0.5i)17-s + (−0.130 + 0.991i)19-s + (−0.258 − 0.965i)23-s + (0.258 − 0.965i)25-s + (0.923 + 0.382i)27-s + (−0.382 − 0.923i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)33-s + (0.793 − 0.608i)37-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s − i·15-s + (−0.866 + 0.5i)17-s + (−0.130 + 0.991i)19-s + (−0.258 − 0.965i)23-s + (0.258 − 0.965i)25-s + (0.923 + 0.382i)27-s + (−0.382 − 0.923i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)33-s + (0.793 − 0.608i)37-s + ⋯ |
Λ(s)=(=(448s/2ΓR(s+1)L(s)(0.848+0.529i)Λ(1−s)
Λ(s)=(=(448s/2ΓR(s+1)L(s)(0.848+0.529i)Λ(1−s)
Degree: |
1 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.848+0.529i
|
Analytic conductor: |
48.1442 |
Root analytic conductor: |
48.1442 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(123,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 448, (1: ), 0.848+0.529i)
|
Particular Values
L(21) |
≈ |
0.8108924625+0.2324727159i |
L(21) |
≈ |
0.8108924625+0.2324727159i |
L(1) |
≈ |
0.6531261590+0.1933475929i |
L(1) |
≈ |
0.6531261590+0.1933475929i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+(−0.608+0.793i)T |
| 5 | 1+(−0.793+0.608i)T |
| 11 | 1+(−0.991+0.130i)T |
| 13 | 1+(0.923−0.382i)T |
| 17 | 1+(−0.866+0.5i)T |
| 19 | 1+(−0.130+0.991i)T |
| 23 | 1+(−0.258−0.965i)T |
| 29 | 1+(−0.382−0.923i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1+(0.793−0.608i)T |
| 41 | 1+(0.707−0.707i)T |
| 43 | 1+(−0.382+0.923i)T |
| 47 | 1+(−0.866−0.5i)T |
| 53 | 1+(0.991−0.130i)T |
| 59 | 1+(0.130+0.991i)T |
| 61 | 1+(−0.991−0.130i)T |
| 67 | 1+(−0.608+0.793i)T |
| 71 | 1+(0.707+0.707i)T |
| 73 | 1+(0.965+0.258i)T |
| 79 | 1+(0.866+0.5i)T |
| 83 | 1+(0.923−0.382i)T |
| 89 | 1+(−0.965+0.258i)T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.72377529339314307276528801572, −23.214690377407588393153951261184, −22.13277905389046166416220750635, −21.172439134391243625146339611649, −20.061072818438110145553377360586, −19.48999869298299198905913252089, −18.35989839464557528641312246880, −17.933465672022212503700505371328, −16.6911639072209400985656927979, −16.03832051042465830379975428445, −15.28563816089794929682264582818, −13.68784843335169083442857119695, −13.17640217989640987888748193653, −12.304806347259675178364107962674, −11.26672207931549460397397330307, −10.905525188790872811587906480487, −9.22049249723522403710432739425, −8.3077016639637478993438724193, −7.46061175140618142758118402415, −6.56696330197112405087988331027, −5.35550422506149971315569688708, −4.607803652274417876035995432293, −3.185873856254618456464610614333, −1.77445597839355360089503639784, −0.57524603389849208327274870190,
0.456090383165831825666249144796, 2.44985237270969219583861438452, 3.72327503358426037094644436393, 4.33612633570910928352953704350, 5.67984669975944607109705536496, 6.42782569272863542957928836599, 7.74149301691719577628982921675, 8.56106540198448553692648459894, 9.90063591484713586622685031202, 10.733145407655266375647592504834, 11.2072692119241006565651243728, 12.29566838536251912511906972646, 13.24461662465121636394851748391, 14.656303800090143766350273856015, 15.2636524125537110071219859748, 16.01031627153552984452380519076, 16.73304140434953189478837920217, 18.068369678696432250891660400768, 18.409195348631395647816028702391, 19.67816224615864485187695730208, 20.622773409256521871335476487426, 21.26724241857181562292025659127, 22.40412236648902851105890480028, 22.91900387131658110738533859377, 23.56763464852258809496875884796