L(s) = 1 | + (−0.608 + 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s − i·15-s + (−0.866 + 0.5i)17-s + (−0.130 + 0.991i)19-s + (−0.258 − 0.965i)23-s + (0.258 − 0.965i)25-s + (0.923 + 0.382i)27-s + (−0.382 − 0.923i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)33-s + (0.793 − 0.608i)37-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)3-s + (−0.793 + 0.608i)5-s + (−0.258 − 0.965i)9-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)13-s − i·15-s + (−0.866 + 0.5i)17-s + (−0.130 + 0.991i)19-s + (−0.258 − 0.965i)23-s + (0.258 − 0.965i)25-s + (0.923 + 0.382i)27-s + (−0.382 − 0.923i)29-s + (−0.5 − 0.866i)31-s + (0.5 − 0.866i)33-s + (0.793 − 0.608i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8108924625 + 0.2324727159i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8108924625 + 0.2324727159i\) |
\(L(1)\) |
\(\approx\) |
\(0.6531261590 + 0.1933475929i\) |
\(L(1)\) |
\(\approx\) |
\(0.6531261590 + 0.1933475929i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.608 + 0.793i)T \) |
| 5 | \( 1 + (-0.793 + 0.608i)T \) |
| 11 | \( 1 + (-0.991 + 0.130i)T \) |
| 13 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.130 + 0.991i)T \) |
| 23 | \( 1 + (-0.258 - 0.965i)T \) |
| 29 | \( 1 + (-0.382 - 0.923i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.793 - 0.608i)T \) |
| 41 | \( 1 + (0.707 - 0.707i)T \) |
| 43 | \( 1 + (-0.382 + 0.923i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.991 - 0.130i)T \) |
| 59 | \( 1 + (0.130 + 0.991i)T \) |
| 61 | \( 1 + (-0.991 - 0.130i)T \) |
| 67 | \( 1 + (-0.608 + 0.793i)T \) |
| 71 | \( 1 + (0.707 + 0.707i)T \) |
| 73 | \( 1 + (0.965 + 0.258i)T \) |
| 79 | \( 1 + (0.866 + 0.5i)T \) |
| 83 | \( 1 + (0.923 - 0.382i)T \) |
| 89 | \( 1 + (-0.965 + 0.258i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.72377529339314307276528801572, −23.214690377407588393153951261184, −22.13277905389046166416220750635, −21.172439134391243625146339611649, −20.061072818438110145553377360586, −19.48999869298299198905913252089, −18.35989839464557528641312246880, −17.933465672022212503700505371328, −16.6911639072209400985656927979, −16.03832051042465830379975428445, −15.28563816089794929682264582818, −13.68784843335169083442857119695, −13.17640217989640987888748193653, −12.304806347259675178364107962674, −11.26672207931549460397397330307, −10.905525188790872811587906480487, −9.22049249723522403710432739425, −8.3077016639637478993438724193, −7.46061175140618142758118402415, −6.56696330197112405087988331027, −5.35550422506149971315569688708, −4.607803652274417876035995432293, −3.185873856254618456464610614333, −1.77445597839355360089503639784, −0.57524603389849208327274870190,
0.456090383165831825666249144796, 2.44985237270969219583861438452, 3.72327503358426037094644436393, 4.33612633570910928352953704350, 5.67984669975944607109705536496, 6.42782569272863542957928836599, 7.74149301691719577628982921675, 8.56106540198448553692648459894, 9.90063591484713586622685031202, 10.733145407655266375647592504834, 11.2072692119241006565651243728, 12.29566838536251912511906972646, 13.24461662465121636394851748391, 14.656303800090143766350273856015, 15.2636524125537110071219859748, 16.01031627153552984452380519076, 16.73304140434953189478837920217, 18.068369678696432250891660400768, 18.409195348631395647816028702391, 19.67816224615864485187695730208, 20.622773409256521871335476487426, 21.26724241857181562292025659127, 22.40412236648902851105890480028, 22.91900387131658110738533859377, 23.56763464852258809496875884796