L(s) = 1 | + (0.999 − 0.0318i)2-s + (−0.830 + 0.556i)3-s + (0.997 − 0.0637i)4-s + (−0.996 + 0.0796i)5-s + (−0.812 + 0.582i)6-s + (0.290 − 0.956i)7-s + (0.995 − 0.0955i)8-s + (0.380 − 0.924i)9-s + (−0.993 + 0.111i)10-s + (−0.742 + 0.669i)11-s + (−0.793 + 0.608i)12-s + (−0.366 + 0.930i)13-s + (0.260 − 0.965i)14-s + (0.783 − 0.620i)15-s + (0.991 − 0.127i)16-s + (0.614 − 0.788i)17-s + ⋯ |
L(s) = 1 | + (0.999 − 0.0318i)2-s + (−0.830 + 0.556i)3-s + (0.997 − 0.0637i)4-s + (−0.996 + 0.0796i)5-s + (−0.812 + 0.582i)6-s + (0.290 − 0.956i)7-s + (0.995 − 0.0955i)8-s + (0.380 − 0.924i)9-s + (−0.993 + 0.111i)10-s + (−0.742 + 0.669i)11-s + (−0.793 + 0.608i)12-s + (−0.366 + 0.930i)13-s + (0.260 − 0.965i)14-s + (0.783 − 0.620i)15-s + (0.991 − 0.127i)16-s + (0.614 − 0.788i)17-s + ⋯ |
Λ(s)=(=(4729s/2ΓR(s)L(s)(−0.741−0.671i)Λ(1−s)
Λ(s)=(=(4729s/2ΓR(s)L(s)(−0.741−0.671i)Λ(1−s)
Degree: |
1 |
Conductor: |
4729
|
Sign: |
−0.741−0.671i
|
Analytic conductor: |
21.9613 |
Root analytic conductor: |
21.9613 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4729(1012,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 4729, (0: ), −0.741−0.671i)
|
Particular Values
L(21) |
≈ |
0.2559045152−0.6639918564i |
L(21) |
≈ |
0.2559045152−0.6639918564i |
L(1) |
≈ |
1.110759273−0.03203538044i |
L(1) |
≈ |
1.110759273−0.03203538044i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4729 | 1 |
good | 2 | 1+(0.999−0.0318i)T |
| 3 | 1+(−0.830+0.556i)T |
| 5 | 1+(−0.996+0.0796i)T |
| 7 | 1+(0.290−0.956i)T |
| 11 | 1+(−0.742+0.669i)T |
| 13 | 1+(−0.366+0.930i)T |
| 17 | 1+(0.614−0.788i)T |
| 19 | 1+(−0.0239−0.999i)T |
| 23 | 1+(−0.872−0.488i)T |
| 29 | 1+(−0.999−0.0318i)T |
| 31 | 1+(0.709+0.704i)T |
| 37 | 1+(0.495−0.868i)T |
| 41 | 1+(−0.166−0.986i)T |
| 43 | 1+(0.663+0.748i)T |
| 47 | 1+(−0.967−0.252i)T |
| 53 | 1+(−0.901+0.431i)T |
| 59 | 1+(−0.563+0.826i)T |
| 61 | 1+(0.275−0.961i)T |
| 67 | 1+(−0.921+0.388i)T |
| 71 | 1+(−0.589+0.808i)T |
| 73 | 1+(0.410+0.912i)T |
| 79 | 1−T |
| 83 | 1+(0.549−0.835i)T |
| 89 | 1+(0.978−0.205i)T |
| 97 | 1+(0.290−0.956i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.55574259590924789515125426792, −17.7595102678029378114483280894, −16.80377098157945768615974949961, −16.35546898799075490637248511646, −15.63396358301169353584804013812, −15.1241390431631344465844884307, −14.511832292320485235289257728045, −13.49584608892013218179529271736, −12.84310709297615190240465511929, −12.37808393678052353358163605133, −11.79959690099454301059873294048, −11.306086177483327306358933917616, −10.59756230509978061237064262119, −9.906577418720234953171446571537, −8.32912383837738958963872896782, −7.81953432434736219903496964954, −7.638888366984624716027878367145, −6.21510434593501745221172596096, −5.973108250241685314651245617722, −5.22771339096086410802927906912, −4.65458322735693488731725357146, −3.63189586725115378364381339617, −2.982786455616031377112954378952, −2.051106186653640082630272789544, −1.20578110601744375242249470502,
0.15330590061636819989539125628, 1.25421861032178334150952456574, 2.41470904147133513471040797597, 3.33930062273620824800163500083, 4.10015920547706494801788520629, 4.64008856405024055167320413777, 4.96068297757718999534647012082, 5.99510556873087344805263822966, 6.94692946987578324132801881281, 7.2560895732047006411688015130, 7.91966975636180709985281672079, 9.21260828509679314197035122694, 10.10712351244017845178563753055, 10.62132220479724853714170505064, 11.37397188980699666535152794244, 11.69256581977533001259816177287, 12.46812169950302751846374901873, 13.02204103576076873412035062453, 14.069332188483575314250719755710, 14.53292493431110982552638931030, 15.259016241743855657864745771776, 16.07722037550101548719638622597, 16.16219843855650633660380744099, 17.030384748593109721113306536646, 17.71253351048583935237619474838