Properties

Label 1-4729-4729.1022-r0-0-0
Degree 11
Conductor 47294729
Sign 0.1480.988i-0.148 - 0.988i
Analytic cond. 21.961321.9613
Root an. cond. 21.961321.9613
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.933 − 0.358i)2-s + (0.481 + 0.876i)3-s + (0.742 − 0.669i)4-s + (0.129 − 0.991i)5-s + (0.763 + 0.645i)6-s + (0.490 − 0.871i)7-s + (0.453 − 0.891i)8-s + (−0.536 + 0.843i)9-s + (−0.234 − 0.972i)10-s + (0.835 − 0.549i)11-s + (0.944 + 0.328i)12-s + (−0.140 − 0.990i)13-s + (0.145 − 0.989i)14-s + (0.931 − 0.363i)15-s + (0.103 − 0.994i)16-s + (0.999 + 0.0186i)17-s + ⋯
L(s)  = 1  + (0.933 − 0.358i)2-s + (0.481 + 0.876i)3-s + (0.742 − 0.669i)4-s + (0.129 − 0.991i)5-s + (0.763 + 0.645i)6-s + (0.490 − 0.871i)7-s + (0.453 − 0.891i)8-s + (−0.536 + 0.843i)9-s + (−0.234 − 0.972i)10-s + (0.835 − 0.549i)11-s + (0.944 + 0.328i)12-s + (−0.140 − 0.990i)13-s + (0.145 − 0.989i)14-s + (0.931 − 0.363i)15-s + (0.103 − 0.994i)16-s + (0.999 + 0.0186i)17-s + ⋯

Functional equation

Λ(s)=(4729s/2ΓR(s)L(s)=((0.1480.988i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(4729s/2ΓR(s)L(s)=((0.1480.988i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 47294729
Sign: 0.1480.988i-0.148 - 0.988i
Analytic conductor: 21.961321.9613
Root analytic conductor: 21.961321.9613
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ4729(1022,)\chi_{4729} (1022, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 4729, (0: ), 0.1480.988i)(1,\ 4729,\ (0:\ ),\ -0.148 - 0.988i)

Particular Values

L(12)L(\frac{1}{2}) \approx 3.0809933213.579884233i3.080993321 - 3.579884233i
L(12)L(\frac12) \approx 3.0809933213.579884233i3.080993321 - 3.579884233i
L(1)L(1) \approx 2.2456081880.9691640194i2.245608188 - 0.9691640194i
L(1)L(1) \approx 2.2456081880.9691640194i2.245608188 - 0.9691640194i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad4729 1 1
good2 1+(0.9330.358i)T 1 + (0.933 - 0.358i)T
3 1+(0.481+0.876i)T 1 + (0.481 + 0.876i)T
5 1+(0.1290.991i)T 1 + (0.129 - 0.991i)T
7 1+(0.4900.871i)T 1 + (0.490 - 0.871i)T
11 1+(0.8350.549i)T 1 + (0.835 - 0.549i)T
13 1+(0.1400.990i)T 1 + (-0.140 - 0.990i)T
17 1+(0.999+0.0186i)T 1 + (0.999 + 0.0186i)T
19 1+(0.01320.999i)T 1 + (-0.0132 - 0.999i)T
23 1+(0.402+0.915i)T 1 + (0.402 + 0.915i)T
29 1+(0.3580.933i)T 1 + (0.358 - 0.933i)T
31 1+(0.905+0.424i)T 1 + (-0.905 + 0.424i)T
37 1+(0.0610+0.998i)T 1 + (0.0610 + 0.998i)T
41 1+(0.4170.908i)T 1 + (0.417 - 0.908i)T
43 1+(0.730+0.683i)T 1 + (-0.730 + 0.683i)T
47 1+(0.744+0.667i)T 1 + (-0.744 + 0.667i)T
53 1+(0.1000.994i)T 1 + (0.100 - 0.994i)T
59 1+(0.3260.945i)T 1 + (0.326 - 0.945i)T
61 1+(0.9810.192i)T 1 + (0.981 - 0.192i)T
67 1+(0.606+0.795i)T 1 + (-0.606 + 0.795i)T
71 1+(0.643+0.765i)T 1 + (-0.643 + 0.765i)T
73 1+(0.114+0.993i)T 1 + (-0.114 + 0.993i)T
79 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
83 1+(0.988+0.148i)T 1 + (0.988 + 0.148i)T
89 1+(0.231+0.972i)T 1 + (-0.231 + 0.972i)T
97 1+(0.490+0.871i)T 1 + (-0.490 + 0.871i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.19178511658403693540083246466, −17.95937854489077523767049431646, −16.79688466082791170669831115671, −16.45073557749437417709606455855, −15.133614268594599972818895751898, −14.771975779409136333127637546825, −14.38778946537984388854438107329, −13.959387796440870664813241477649, −12.95919168916016707730490164690, −12.227201172975024730378962417422, −11.9211718515218400443233978682, −11.26345753955590274506228277413, −10.316221443935870689677594787279, −9.255621992580864817876827254605, −8.64505484745770015527986910067, −7.69638463364773615078972726734, −7.28257273331969103503742899957, −6.501036871251169220621965917450, −6.07495757024391071871330311707, −5.26500988608440678239819049356, −4.226639498022629894216596174247, −3.464644806985911032812802751387, −2.80363823259807162459576007135, −1.91832783848993049237908460752, −1.63217811976102892894750295766, 0.79449159519108975310913803326, 1.4180716080160267034452153921, 2.497596881362628499628013261231, 3.488722018641129583541073440628, 3.77875133380976331439897907119, 4.73474823543425807307530152230, 5.148256821172925656469287439129, 5.77154434739538243287819882496, 6.84796692285556999029992926648, 7.804483726350539428496383131647, 8.33891145088643773887284160914, 9.35836690324135033079909538059, 9.85375062711228100346171763735, 10.5394241472802479450815060227, 11.37785395161819191829415413919, 11.71114001799475688126693645309, 12.86671325638104858701907781857, 13.30462082909305716834214268193, 13.96067291966988542671968183799, 14.53212819726024453819029361179, 15.15612610992233708304806457837, 15.936207302742519274427544943018, 16.43578316944851201685605762340, 17.153563327390158203805353572608, 17.66013766551700918138090364836

Graph of the ZZ-function along the critical line