L(s) = 1 | + (0.709 + 0.704i)2-s + (−0.949 − 0.313i)3-s + (0.00797 + 0.999i)4-s + (0.140 + 0.990i)5-s + (−0.453 − 0.891i)6-s + (0.631 + 0.775i)7-s + (−0.698 + 0.715i)8-s + (0.803 + 0.595i)9-s + (−0.597 + 0.801i)10-s + (0.768 + 0.639i)11-s + (0.305 − 0.952i)12-s + (−0.875 − 0.483i)13-s + (−0.0981 + 0.995i)14-s + (0.177 − 0.984i)15-s + (−0.999 + 0.0159i)16-s + (0.242 + 0.970i)17-s + ⋯ |
L(s) = 1 | + (0.709 + 0.704i)2-s + (−0.949 − 0.313i)3-s + (0.00797 + 0.999i)4-s + (0.140 + 0.990i)5-s + (−0.453 − 0.891i)6-s + (0.631 + 0.775i)7-s + (−0.698 + 0.715i)8-s + (0.803 + 0.595i)9-s + (−0.597 + 0.801i)10-s + (0.768 + 0.639i)11-s + (0.305 − 0.952i)12-s + (−0.875 − 0.483i)13-s + (−0.0981 + 0.995i)14-s + (0.177 − 0.984i)15-s + (−0.999 + 0.0159i)16-s + (0.242 + 0.970i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.540 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.540 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.6354782078 + 1.164000206i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.6354782078 + 1.164000206i\) |
\(L(1)\) |
\(\approx\) |
\(0.7623311360 + 0.8398107802i\) |
\(L(1)\) |
\(\approx\) |
\(0.7623311360 + 0.8398107802i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.709 + 0.704i)T \) |
| 3 | \( 1 + (-0.949 - 0.313i)T \) |
| 5 | \( 1 + (0.140 + 0.990i)T \) |
| 7 | \( 1 + (0.631 + 0.775i)T \) |
| 11 | \( 1 + (0.768 + 0.639i)T \) |
| 13 | \( 1 + (-0.875 - 0.483i)T \) |
| 17 | \( 1 + (0.242 + 0.970i)T \) |
| 19 | \( 1 + (0.749 - 0.661i)T \) |
| 23 | \( 1 + (-0.0637 + 0.997i)T \) |
| 29 | \( 1 + (-0.704 - 0.709i)T \) |
| 31 | \( 1 + (0.956 - 0.290i)T \) |
| 37 | \( 1 + (-0.129 + 0.991i)T \) |
| 41 | \( 1 + (0.174 - 0.984i)T \) |
| 43 | \( 1 + (-0.972 - 0.234i)T \) |
| 47 | \( 1 + (0.881 - 0.472i)T \) |
| 53 | \( 1 + (-0.450 + 0.892i)T \) |
| 59 | \( 1 + (-0.713 + 0.700i)T \) |
| 61 | \( 1 + (-0.685 + 0.728i)T \) |
| 67 | \( 1 + (-0.647 - 0.762i)T \) |
| 71 | \( 1 + (0.0132 - 0.999i)T \) |
| 73 | \( 1 + (-0.370 - 0.928i)T \) |
| 79 | \( 1 + (0.866 + 0.5i)T \) |
| 83 | \( 1 + (-0.375 - 0.926i)T \) |
| 89 | \( 1 + (-0.987 + 0.156i)T \) |
| 97 | \( 1 + (-0.631 - 0.775i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.67410988547640522654713066309, −16.89730032468917199354199385877, −16.42377058231898290425587615795, −15.94243116771142902650669064465, −14.80177748312658213539164527804, −14.209252936323112123254514474784, −13.73426670892054171386230529093, −12.77126240193625273017533999045, −12.23462339820773742519988607005, −11.65323739736837849550791333682, −11.201616409473186538982022183, −10.36641547111430889299146858860, −9.652017211409536773095795923939, −9.25147443943877342117121439361, −8.14750720691657749986300646466, −7.10484433937828798782416713055, −6.46679449720705400379981889214, −5.51039552766609448883297201904, −5.08703818385370654333498610883, −4.393679853739126585436584474596, −3.96050601543604621438799261659, −2.92976835321432201679966906921, −1.620833931418219983385442478164, −1.17420349780905446851331756926, −0.31721934354165124204778947743,
1.52518846005755041506162427586, 2.27668833180681335880955951524, 3.11996258013803350331912114771, 4.10679121625674401296785237563, 4.84147057016961026874923498617, 5.550482528549180787045186714121, 6.07209084802445589160245270754, 6.73259795846136359445604793567, 7.60756841734879893303719492041, 7.71439972194042586168626537899, 9.0136970104477367095319385073, 9.8188744871852133399053009238, 10.64496978224513914421600314392, 11.48532606241591183272053481821, 12.00345758887371008104182378565, 12.294450083267708204520924416114, 13.42318464330508339663797481213, 13.830944313505608489922842111951, 14.82430136133392842399370258876, 15.319220709939558329674405484594, 15.49408684159581564896186522213, 16.903148543532777308805201611928, 17.187917092061963060854951787439, 17.753355904282104530428475310750, 18.28144381563708663102662888552