L(s) = 1 | + (0.275 − 0.961i)2-s + (0.944 − 0.328i)3-s + (−0.848 − 0.529i)4-s + (0.0875 + 0.996i)5-s + (−0.0557 − 0.998i)6-s + (−0.166 + 0.986i)7-s + (−0.742 + 0.669i)8-s + (0.783 − 0.620i)9-s + (0.981 + 0.190i)10-s + (0.990 + 0.135i)11-s + (−0.975 − 0.221i)12-s + (0.967 + 0.252i)13-s + (0.901 + 0.431i)14-s + (0.410 + 0.912i)15-s + (0.439 + 0.898i)16-s + (0.633 + 0.773i)17-s + ⋯ |
L(s) = 1 | + (0.275 − 0.961i)2-s + (0.944 − 0.328i)3-s + (−0.848 − 0.529i)4-s + (0.0875 + 0.996i)5-s + (−0.0557 − 0.998i)6-s + (−0.166 + 0.986i)7-s + (−0.742 + 0.669i)8-s + (0.783 − 0.620i)9-s + (0.981 + 0.190i)10-s + (0.990 + 0.135i)11-s + (−0.975 − 0.221i)12-s + (0.967 + 0.252i)13-s + (0.901 + 0.431i)14-s + (0.410 + 0.912i)15-s + (0.439 + 0.898i)16-s + (0.633 + 0.773i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.846 - 0.531i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.846 - 0.531i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.206055418 - 0.9228257585i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.206055418 - 0.9228257585i\) |
\(L(1)\) |
\(\approx\) |
\(1.694681484 - 0.5552510442i\) |
\(L(1)\) |
\(\approx\) |
\(1.694681484 - 0.5552510442i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.275 - 0.961i)T \) |
| 3 | \( 1 + (0.944 - 0.328i)T \) |
| 5 | \( 1 + (0.0875 + 0.996i)T \) |
| 7 | \( 1 + (-0.166 + 0.986i)T \) |
| 11 | \( 1 + (0.990 + 0.135i)T \) |
| 13 | \( 1 + (0.967 + 0.252i)T \) |
| 17 | \( 1 + (0.633 + 0.773i)T \) |
| 19 | \( 1 + (-0.182 - 0.983i)T \) |
| 23 | \( 1 + (0.969 + 0.244i)T \) |
| 29 | \( 1 + (-0.961 + 0.275i)T \) |
| 31 | \( 1 + (0.973 + 0.229i)T \) |
| 37 | \( 1 + (-0.213 - 0.976i)T \) |
| 41 | \( 1 + (0.283 - 0.959i)T \) |
| 43 | \( 1 + (0.947 - 0.321i)T \) |
| 47 | \( 1 + (-0.788 + 0.614i)T \) |
| 53 | \( 1 + (0.692 - 0.721i)T \) |
| 59 | \( 1 + (-0.991 + 0.127i)T \) |
| 61 | \( 1 + (-0.460 - 0.887i)T \) |
| 67 | \( 1 + (-0.424 - 0.905i)T \) |
| 71 | \( 1 + (0.395 + 0.918i)T \) |
| 73 | \( 1 + (0.812 - 0.582i)T \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 + (0.698 + 0.715i)T \) |
| 89 | \( 1 + (-0.516 - 0.856i)T \) |
| 97 | \( 1 + (0.166 - 0.986i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.15103566258565916342533348293, −17.1601177714662145246089859264, −16.603616168826212280472011851468, −16.402813976337385659899919273069, −15.542803904451681924738833362871, −14.8445919415499558122578176334, −14.19868820397466821026515511132, −13.53570670561591588047569802109, −13.28316532824565793286252234494, −12.45782343023208640659121978241, −11.63322596627698363372099542341, −10.507952754690201107772240296, −9.66598028177911307063452420183, −9.27496168778156152878007319761, −8.50549909501330373893683142891, −7.97296050037359369900504280243, −7.35727853184781822549257986254, −6.47287157314130315118115244226, −5.75905035955475987060270773289, −4.76907933062700712749842061917, −4.267742080932450802188066345220, −3.63429244313840010634343511060, −3.01089162599002323508900390253, −1.44443292085033173443332411565, −0.8908004016040013681269797289,
1.025198017396325480730267852913, 1.89364954794046631975023843545, 2.3836925791841425813874582187, 3.39056783348299563243670760016, 3.515724185080342293436568159618, 4.50890099860620690098167214583, 5.66224988935378971999610647972, 6.310584718003242915849612453295, 6.96854379195001241143931293565, 7.98507777185179818874068612492, 8.88293019081686431452635067191, 9.164478070034034221757404038708, 9.84977055663680281937311480329, 10.83264747920804014938918178342, 11.26548193796254143425492078997, 12.137895744486579552705286564052, 12.69036952384969520231577176487, 13.380183809333571758518245267626, 14.14976722535192485747136568085, 14.48099094375188147759687446309, 15.31859457998995610247178214743, 15.54235675261017733065424876382, 17.020068683471194945175930024767, 17.83708238058387174313468345833, 18.329983848778510532329744635054