L(s) = 1 | + (−0.0697 + 0.997i)2-s + (−0.999 + 0.0348i)3-s + (−0.990 − 0.139i)4-s + (0.0348 − 0.999i)6-s + (0.866 − 0.5i)7-s + (0.207 − 0.978i)8-s + (0.997 − 0.0697i)9-s + (−0.104 − 0.994i)11-s + (0.994 + 0.104i)12-s + (−0.829 + 0.559i)13-s + (0.438 + 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.927 − 0.374i)17-s + i·18-s + (−0.848 + 0.529i)21-s + (0.999 − 0.0348i)22-s + ⋯ |
L(s) = 1 | + (−0.0697 + 0.997i)2-s + (−0.999 + 0.0348i)3-s + (−0.990 − 0.139i)4-s + (0.0348 − 0.999i)6-s + (0.866 − 0.5i)7-s + (0.207 − 0.978i)8-s + (0.997 − 0.0697i)9-s + (−0.104 − 0.994i)11-s + (0.994 + 0.104i)12-s + (−0.829 + 0.559i)13-s + (0.438 + 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.927 − 0.374i)17-s + i·18-s + (−0.848 + 0.529i)21-s + (0.999 − 0.0348i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1333210161 - 0.1569256245i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1333210161 - 0.1569256245i\) |
\(L(1)\) |
\(\approx\) |
\(0.5367342957 + 0.1617882256i\) |
\(L(1)\) |
\(\approx\) |
\(0.5367342957 + 0.1617882256i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.0697 + 0.997i)T \) |
| 3 | \( 1 + (-0.999 + 0.0348i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.104 - 0.994i)T \) |
| 13 | \( 1 + (-0.829 + 0.559i)T \) |
| 17 | \( 1 + (-0.927 - 0.374i)T \) |
| 23 | \( 1 + (-0.694 + 0.719i)T \) |
| 29 | \( 1 + (-0.374 - 0.927i)T \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
| 37 | \( 1 + (-0.587 + 0.809i)T \) |
| 41 | \( 1 + (-0.961 - 0.275i)T \) |
| 43 | \( 1 + (-0.984 - 0.173i)T \) |
| 47 | \( 1 + (0.927 - 0.374i)T \) |
| 53 | \( 1 + (-0.139 + 0.990i)T \) |
| 59 | \( 1 + (-0.241 - 0.970i)T \) |
| 61 | \( 1 + (-0.719 - 0.694i)T \) |
| 67 | \( 1 + (0.529 - 0.848i)T \) |
| 71 | \( 1 + (0.882 + 0.469i)T \) |
| 73 | \( 1 + (-0.829 - 0.559i)T \) |
| 79 | \( 1 + (0.0348 + 0.999i)T \) |
| 83 | \( 1 + (-0.743 - 0.669i)T \) |
| 89 | \( 1 + (0.961 - 0.275i)T \) |
| 97 | \( 1 + (-0.529 - 0.848i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.9219421539163958787133950309, −22.953141597981341278744071557198, −22.13387766945670501483264085395, −21.75101009853809565455116391577, −20.61032610394405936842791177099, −19.99461337528149176882811064324, −18.78139902021523314713649718898, −17.95163843388977893092972989972, −17.62289283838434021051922336852, −16.66489661170362045186776239020, −15.27687598539959790433966627329, −14.58883654491750604595661038741, −13.2013379018304523701748423908, −12.42840858217178443056354964714, −11.86886566370897856282399631840, −10.89833897591511087351092839645, −10.26390387944850046426730544265, −9.2625190772717535116995975034, −8.11483636693134938531970646274, −7.076571570482413378909038449, −5.60096385159983213781283412215, −4.874461881643195052999566976636, −4.08791945503839655182143585869, −2.374910207679496170119374290, −1.60334888863503428116304653724,
0.1346123206332826723647766719, 1.63384810274201224227647423388, 3.79901226724437941443107295606, 4.76170621732006360441525006550, 5.42979356358868513102909922874, 6.51543110967549587284381417620, 7.27945438982369828497844691289, 8.21458925140201225151474268643, 9.3430394058808024571672388909, 10.36208632036673481289814623298, 11.28554905803469003166198349475, 12.15319001457048032052522573635, 13.48125284958253264489073329495, 13.98354350375180449119483566736, 15.19475608530348766138949353401, 15.91957481820657034078495515879, 16.95566593531093496897989922886, 17.231724953932246318317000913374, 18.23924422361244577905102932265, 18.89884879624218944540147214371, 20.15125896358042915984658952256, 21.63735098231433108874630069325, 21.84879959907493109814035824471, 22.97082264342892682540669957214, 23.84768004508762379737842677829