L(s) = 1 | + (−0.0697 + 0.997i)2-s + (−0.999 + 0.0348i)3-s + (−0.990 − 0.139i)4-s + (0.0348 − 0.999i)6-s + (0.866 − 0.5i)7-s + (0.207 − 0.978i)8-s + (0.997 − 0.0697i)9-s + (−0.104 − 0.994i)11-s + (0.994 + 0.104i)12-s + (−0.829 + 0.559i)13-s + (0.438 + 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.927 − 0.374i)17-s + i·18-s + (−0.848 + 0.529i)21-s + (0.999 − 0.0348i)22-s + ⋯ |
L(s) = 1 | + (−0.0697 + 0.997i)2-s + (−0.999 + 0.0348i)3-s + (−0.990 − 0.139i)4-s + (0.0348 − 0.999i)6-s + (0.866 − 0.5i)7-s + (0.207 − 0.978i)8-s + (0.997 − 0.0697i)9-s + (−0.104 − 0.994i)11-s + (0.994 + 0.104i)12-s + (−0.829 + 0.559i)13-s + (0.438 + 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.927 − 0.374i)17-s + i·18-s + (−0.848 + 0.529i)21-s + (0.999 − 0.0348i)22-s + ⋯ |
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.161−0.986i)Λ(1−s)
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.161−0.986i)Λ(1−s)
Degree: |
1 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.161−0.986i
|
Analytic conductor: |
2.20589 |
Root analytic conductor: |
2.20589 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(167,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 475, (0: ), −0.161−0.986i)
|
Particular Values
L(21) |
≈ |
0.1333210161−0.1569256245i |
L(21) |
≈ |
0.1333210161−0.1569256245i |
L(1) |
≈ |
0.5367342957+0.1617882256i |
L(1) |
≈ |
0.5367342957+0.1617882256i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(−0.0697+0.997i)T |
| 3 | 1+(−0.999+0.0348i)T |
| 7 | 1+(0.866−0.5i)T |
| 11 | 1+(−0.104−0.994i)T |
| 13 | 1+(−0.829+0.559i)T |
| 17 | 1+(−0.927−0.374i)T |
| 23 | 1+(−0.694+0.719i)T |
| 29 | 1+(−0.374−0.927i)T |
| 31 | 1+(−0.669+0.743i)T |
| 37 | 1+(−0.587+0.809i)T |
| 41 | 1+(−0.961−0.275i)T |
| 43 | 1+(−0.984−0.173i)T |
| 47 | 1+(0.927−0.374i)T |
| 53 | 1+(−0.139+0.990i)T |
| 59 | 1+(−0.241−0.970i)T |
| 61 | 1+(−0.719−0.694i)T |
| 67 | 1+(0.529−0.848i)T |
| 71 | 1+(0.882+0.469i)T |
| 73 | 1+(−0.829−0.559i)T |
| 79 | 1+(0.0348+0.999i)T |
| 83 | 1+(−0.743−0.669i)T |
| 89 | 1+(0.961−0.275i)T |
| 97 | 1+(−0.529−0.848i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.9219421539163958787133950309, −22.953141597981341278744071557198, −22.13387766945670501483264085395, −21.75101009853809565455116391577, −20.61032610394405936842791177099, −19.99461337528149176882811064324, −18.78139902021523314713649718898, −17.95163843388977893092972989972, −17.62289283838434021051922336852, −16.66489661170362045186776239020, −15.27687598539959790433966627329, −14.58883654491750604595661038741, −13.2013379018304523701748423908, −12.42840858217178443056354964714, −11.86886566370897856282399631840, −10.89833897591511087351092839645, −10.26390387944850046426730544265, −9.2625190772717535116995975034, −8.11483636693134938531970646274, −7.076571570482413378909038449, −5.60096385159983213781283412215, −4.874461881643195052999566976636, −4.08791945503839655182143585869, −2.374910207679496170119374290, −1.60334888863503428116304653724,
0.1346123206332826723647766719, 1.63384810274201224227647423388, 3.79901226724437941443107295606, 4.76170621732006360441525006550, 5.42979356358868513102909922874, 6.51543110967549587284381417620, 7.27945438982369828497844691289, 8.21458925140201225151474268643, 9.3430394058808024571672388909, 10.36208632036673481289814623298, 11.28554905803469003166198349475, 12.15319001457048032052522573635, 13.48125284958253264489073329495, 13.98354350375180449119483566736, 15.19475608530348766138949353401, 15.91957481820657034078495515879, 16.95566593531093496897989922886, 17.231724953932246318317000913374, 18.23924422361244577905102932265, 18.89884879624218944540147214371, 20.15125896358042915984658952256, 21.63735098231433108874630069325, 21.84879959907493109814035824471, 22.97082264342892682540669957214, 23.84768004508762379737842677829