Properties

Label 1-475-475.202-r0-0-0
Degree 11
Conductor 475475
Sign 0.991+0.132i0.991 + 0.132i
Analytic cond. 2.205892.20589
Root an. cond. 2.205892.20589
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.743 − 0.669i)2-s + (0.406 + 0.913i)3-s + (0.104 − 0.994i)4-s + (0.913 + 0.406i)6-s + i·7-s + (−0.587 − 0.809i)8-s + (−0.669 + 0.743i)9-s + (0.309 − 0.951i)11-s + (0.951 − 0.309i)12-s + (0.743 + 0.669i)13-s + (0.669 + 0.743i)14-s + (−0.978 − 0.207i)16-s + (0.994 − 0.104i)17-s + i·18-s + (−0.913 + 0.406i)21-s + (−0.406 − 0.913i)22-s + ⋯
L(s)  = 1  + (0.743 − 0.669i)2-s + (0.406 + 0.913i)3-s + (0.104 − 0.994i)4-s + (0.913 + 0.406i)6-s + i·7-s + (−0.587 − 0.809i)8-s + (−0.669 + 0.743i)9-s + (0.309 − 0.951i)11-s + (0.951 − 0.309i)12-s + (0.743 + 0.669i)13-s + (0.669 + 0.743i)14-s + (−0.978 − 0.207i)16-s + (0.994 − 0.104i)17-s + i·18-s + (−0.913 + 0.406i)21-s + (−0.406 − 0.913i)22-s + ⋯

Functional equation

Λ(s)=(475s/2ΓR(s)L(s)=((0.991+0.132i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(475s/2ΓR(s)L(s)=((0.991+0.132i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 475475    =    52195^{2} \cdot 19
Sign: 0.991+0.132i0.991 + 0.132i
Analytic conductor: 2.205892.20589
Root analytic conductor: 2.205892.20589
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ475(202,)\chi_{475} (202, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 475, (0: ), 0.991+0.132i)(1,\ 475,\ (0:\ ),\ 0.991 + 0.132i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.339206074+0.1551891321i2.339206074 + 0.1551891321i
L(12)L(\frac12) \approx 2.339206074+0.1551891321i2.339206074 + 0.1551891321i
L(1)L(1) \approx 1.7725930980.05372375450i1.772593098 - 0.05372375450i
L(1)L(1) \approx 1.7725930980.05372375450i1.772593098 - 0.05372375450i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
good2 1+(0.7430.669i)T 1 + (0.743 - 0.669i)T
3 1+(0.406+0.913i)T 1 + (0.406 + 0.913i)T
7 1+iT 1 + iT
11 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
13 1+(0.743+0.669i)T 1 + (0.743 + 0.669i)T
17 1+(0.9940.104i)T 1 + (0.994 - 0.104i)T
23 1+(0.207+0.978i)T 1 + (0.207 + 0.978i)T
29 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
31 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
37 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
41 1+(0.978+0.207i)T 1 + (0.978 + 0.207i)T
43 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
47 1+(0.9940.104i)T 1 + (-0.994 - 0.104i)T
53 1+(0.9940.104i)T 1 + (-0.994 - 0.104i)T
59 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
61 1+(0.978+0.207i)T 1 + (-0.978 + 0.207i)T
67 1+(0.4060.913i)T 1 + (0.406 - 0.913i)T
71 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
73 1+(0.7430.669i)T 1 + (0.743 - 0.669i)T
79 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
83 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
89 1+(0.978+0.207i)T 1 + (-0.978 + 0.207i)T
97 1+(0.4060.913i)T 1 + (-0.406 - 0.913i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.73825889070248184741249724776, −22.965997011924011128676398667555, −22.72755615677912275712556448956, −21.05212826892307195158820714818, −20.540587278538236409442709609364, −19.72795280703042182054513771322, −18.54819768476289604445425215498, −17.580524172131932459266125070683, −17.06678059468943891939541499644, −15.96219648371471833314529783664, −14.87250314394820251158217878694, −14.25669753811558625273976803027, −13.43174951967008667949686152916, −12.71042770388345843095288024843, −11.98570126686968990715135282942, −10.77279726606299666956797242659, −9.4509747092350806402726721277, −8.134501859962373195006873186648, −7.66970857821016794327105531938, −6.702982174995339026153127589851, −5.98479516042201694435800427566, −4.60568326268322299733050112739, −3.6387423951601230203459934659, −2.616469015190935387110793308579, −1.13567676783902985109852982253, 1.49344499670233260224339816171, 2.84082479535406066878218274550, 3.46819479339150292376030723178, 4.536380944953793000756663215672, 5.58008507037869334546045348920, 6.20439436746547490511575546975, 8.0298672130377535342797483678, 9.17075847085678772671777350225, 9.58280420031914734288949008209, 10.96561601229268997259890237436, 11.38814691498248363095383540039, 12.43034354443041850562151335468, 13.595721100260562313774370798569, 14.266845507720298855341079829378, 15.047959585289966628665986520501, 15.92505839954516506787027087958, 16.56204885064689468707697580100, 18.17783302206020466516968800425, 19.09545787549896416434233546022, 19.59327916545431304566091568418, 20.85910587792725335287780667201, 21.29843637562013638390992029176, 21.87928900711958637460834182935, 22.7323559867797662210737529267, 23.65442168451692099504211005646

Graph of the ZZ-function along the critical line