L(s) = 1 | + (0.743 − 0.669i)2-s + (0.406 + 0.913i)3-s + (0.104 − 0.994i)4-s + (0.913 + 0.406i)6-s + i·7-s + (−0.587 − 0.809i)8-s + (−0.669 + 0.743i)9-s + (0.309 − 0.951i)11-s + (0.951 − 0.309i)12-s + (0.743 + 0.669i)13-s + (0.669 + 0.743i)14-s + (−0.978 − 0.207i)16-s + (0.994 − 0.104i)17-s + i·18-s + (−0.913 + 0.406i)21-s + (−0.406 − 0.913i)22-s + ⋯ |
L(s) = 1 | + (0.743 − 0.669i)2-s + (0.406 + 0.913i)3-s + (0.104 − 0.994i)4-s + (0.913 + 0.406i)6-s + i·7-s + (−0.587 − 0.809i)8-s + (−0.669 + 0.743i)9-s + (0.309 − 0.951i)11-s + (0.951 − 0.309i)12-s + (0.743 + 0.669i)13-s + (0.669 + 0.743i)14-s + (−0.978 − 0.207i)16-s + (0.994 − 0.104i)17-s + i·18-s + (−0.913 + 0.406i)21-s + (−0.406 − 0.913i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.339206074 + 0.1551891321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.339206074 + 0.1551891321i\) |
\(L(1)\) |
\(\approx\) |
\(1.772593098 - 0.05372375450i\) |
\(L(1)\) |
\(\approx\) |
\(1.772593098 - 0.05372375450i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.743 - 0.669i)T \) |
| 3 | \( 1 + (0.406 + 0.913i)T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 13 | \( 1 + (0.743 + 0.669i)T \) |
| 17 | \( 1 + (0.994 - 0.104i)T \) |
| 23 | \( 1 + (0.207 + 0.978i)T \) |
| 29 | \( 1 + (-0.104 + 0.994i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.951 - 0.309i)T \) |
| 41 | \( 1 + (0.978 + 0.207i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.994 - 0.104i)T \) |
| 53 | \( 1 + (-0.994 - 0.104i)T \) |
| 59 | \( 1 + (-0.978 - 0.207i)T \) |
| 61 | \( 1 + (-0.978 + 0.207i)T \) |
| 67 | \( 1 + (0.406 - 0.913i)T \) |
| 71 | \( 1 + (-0.913 + 0.406i)T \) |
| 73 | \( 1 + (0.743 - 0.669i)T \) |
| 79 | \( 1 + (0.913 - 0.406i)T \) |
| 83 | \( 1 + (0.587 + 0.809i)T \) |
| 89 | \( 1 + (-0.978 + 0.207i)T \) |
| 97 | \( 1 + (-0.406 - 0.913i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.73825889070248184741249724776, −22.965997011924011128676398667555, −22.72755615677912275712556448956, −21.05212826892307195158820714818, −20.540587278538236409442709609364, −19.72795280703042182054513771322, −18.54819768476289604445425215498, −17.580524172131932459266125070683, −17.06678059468943891939541499644, −15.96219648371471833314529783664, −14.87250314394820251158217878694, −14.25669753811558625273976803027, −13.43174951967008667949686152916, −12.71042770388345843095288024843, −11.98570126686968990715135282942, −10.77279726606299666956797242659, −9.4509747092350806402726721277, −8.134501859962373195006873186648, −7.66970857821016794327105531938, −6.702982174995339026153127589851, −5.98479516042201694435800427566, −4.60568326268322299733050112739, −3.6387423951601230203459934659, −2.616469015190935387110793308579, −1.13567676783902985109852982253,
1.49344499670233260224339816171, 2.84082479535406066878218274550, 3.46819479339150292376030723178, 4.536380944953793000756663215672, 5.58008507037869334546045348920, 6.20439436746547490511575546975, 8.0298672130377535342797483678, 9.17075847085678772671777350225, 9.58280420031914734288949008209, 10.96561601229268997259890237436, 11.38814691498248363095383540039, 12.43034354443041850562151335468, 13.595721100260562313774370798569, 14.266845507720298855341079829378, 15.047959585289966628665986520501, 15.92505839954516506787027087958, 16.56204885064689468707697580100, 18.17783302206020466516968800425, 19.09545787549896416434233546022, 19.59327916545431304566091568418, 20.85910587792725335287780667201, 21.29843637562013638390992029176, 21.87928900711958637460834182935, 22.7323559867797662210737529267, 23.65442168451692099504211005646