L(s) = 1 | + (0.788 − 0.615i)2-s + (0.898 − 0.438i)3-s + (0.241 − 0.970i)4-s + (0.438 − 0.898i)6-s + (−0.866 + 0.5i)7-s + (−0.406 − 0.913i)8-s + (0.615 − 0.788i)9-s + (−0.978 − 0.207i)11-s + (−0.207 − 0.978i)12-s + (0.139 − 0.990i)13-s + (−0.374 + 0.927i)14-s + (−0.882 − 0.469i)16-s + (0.275 − 0.961i)17-s − i·18-s + (−0.559 + 0.829i)21-s + (−0.898 + 0.438i)22-s + ⋯ |
L(s) = 1 | + (0.788 − 0.615i)2-s + (0.898 − 0.438i)3-s + (0.241 − 0.970i)4-s + (0.438 − 0.898i)6-s + (−0.866 + 0.5i)7-s + (−0.406 − 0.913i)8-s + (0.615 − 0.788i)9-s + (−0.978 − 0.207i)11-s + (−0.207 − 0.978i)12-s + (0.139 − 0.990i)13-s + (−0.374 + 0.927i)14-s + (−0.882 − 0.469i)16-s + (0.275 − 0.961i)17-s − i·18-s + (−0.559 + 0.829i)21-s + (−0.898 + 0.438i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.667 - 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.667 - 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9552511354 - 2.139125898i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9552511354 - 2.139125898i\) |
\(L(1)\) |
\(\approx\) |
\(1.408564187 - 1.153610276i\) |
\(L(1)\) |
\(\approx\) |
\(1.408564187 - 1.153610276i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.788 - 0.615i)T \) |
| 3 | \( 1 + (0.898 - 0.438i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.978 - 0.207i)T \) |
| 13 | \( 1 + (0.139 - 0.990i)T \) |
| 17 | \( 1 + (0.275 - 0.961i)T \) |
| 23 | \( 1 + (-0.529 + 0.848i)T \) |
| 29 | \( 1 + (0.961 - 0.275i)T \) |
| 31 | \( 1 + (0.104 - 0.994i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.882 + 0.469i)T \) |
| 43 | \( 1 + (-0.642 + 0.766i)T \) |
| 47 | \( 1 + (-0.275 - 0.961i)T \) |
| 53 | \( 1 + (0.970 + 0.241i)T \) |
| 59 | \( 1 + (0.0348 + 0.999i)T \) |
| 61 | \( 1 + (0.848 + 0.529i)T \) |
| 67 | \( 1 + (-0.829 + 0.559i)T \) |
| 71 | \( 1 + (0.997 + 0.0697i)T \) |
| 73 | \( 1 + (0.139 + 0.990i)T \) |
| 79 | \( 1 + (0.438 + 0.898i)T \) |
| 83 | \( 1 + (-0.994 - 0.104i)T \) |
| 89 | \( 1 + (-0.882 + 0.469i)T \) |
| 97 | \( 1 + (0.829 + 0.559i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.96994612093315929547746457408, −23.44346666211174374579348302332, −22.41783206196092408222440943492, −21.5409268372008627832460197086, −20.97694877798481524019459171653, −20.036588006148183073030440628576, −19.245192820060040022469566378366, −18.12435306325665958434399930213, −16.817554079770591079650342385592, −16.14063963548077360188227305651, −15.56795198378373184628698492551, −14.486149671329882812517069416709, −13.91694134207793062592745676541, −13.00465200809268482134232672652, −12.38217737439959796386638365121, −10.8346578869382315955570489139, −10.00236460206257164104743833164, −8.842022421668283445519456992626, −8.01408776581529370270411301339, −7.07178461427277806313862283359, −6.16674299621347577957026895890, −4.82437534827777270891878818135, −4.02302122924991095011328779437, −3.146829177021933454948988129401, −2.13704927791420243937756321020,
0.88188812455066764008865637988, 2.544063473394946269710332189569, 2.86458324508433351561236114818, 3.954156608329161142978925403309, 5.347705002017378062781632333008, 6.17799465384430132418152917464, 7.34393275513095164823919878082, 8.366622125976650549608459825814, 9.64812536132010904417359872530, 10.07827177345176928812059906503, 11.4876590308258395117443963935, 12.3845581902267780701210060474, 13.251119004138264027145673466860, 13.5549655703522959476387370496, 14.79627120658963239950746044311, 15.50256140116586051883792221678, 16.16295075809533143609451077727, 18.115179237155745182830024535801, 18.49999294231930086228030437363, 19.55164733550181180814262629112, 20.04169591172953421605328718534, 20.989563329355732963908989432519, 21.62946755360016921203743062414, 22.75483434126327033769916767808, 23.343835402229382265498075914346