L(s) = 1 | + (0.788 − 0.615i)2-s + (0.898 − 0.438i)3-s + (0.241 − 0.970i)4-s + (0.438 − 0.898i)6-s + (−0.866 + 0.5i)7-s + (−0.406 − 0.913i)8-s + (0.615 − 0.788i)9-s + (−0.978 − 0.207i)11-s + (−0.207 − 0.978i)12-s + (0.139 − 0.990i)13-s + (−0.374 + 0.927i)14-s + (−0.882 − 0.469i)16-s + (0.275 − 0.961i)17-s − i·18-s + (−0.559 + 0.829i)21-s + (−0.898 + 0.438i)22-s + ⋯ |
L(s) = 1 | + (0.788 − 0.615i)2-s + (0.898 − 0.438i)3-s + (0.241 − 0.970i)4-s + (0.438 − 0.898i)6-s + (−0.866 + 0.5i)7-s + (−0.406 − 0.913i)8-s + (0.615 − 0.788i)9-s + (−0.978 − 0.207i)11-s + (−0.207 − 0.978i)12-s + (0.139 − 0.990i)13-s + (−0.374 + 0.927i)14-s + (−0.882 − 0.469i)16-s + (0.275 − 0.961i)17-s − i·18-s + (−0.559 + 0.829i)21-s + (−0.898 + 0.438i)22-s + ⋯ |
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.667−0.744i)Λ(1−s)
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.667−0.744i)Λ(1−s)
Degree: |
1 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.667−0.744i
|
Analytic conductor: |
2.20589 |
Root analytic conductor: |
2.20589 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(238,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 475, (0: ), −0.667−0.744i)
|
Particular Values
L(21) |
≈ |
0.9552511354−2.139125898i |
L(21) |
≈ |
0.9552511354−2.139125898i |
L(1) |
≈ |
1.408564187−1.153610276i |
L(1) |
≈ |
1.408564187−1.153610276i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(0.788−0.615i)T |
| 3 | 1+(0.898−0.438i)T |
| 7 | 1+(−0.866+0.5i)T |
| 11 | 1+(−0.978−0.207i)T |
| 13 | 1+(0.139−0.990i)T |
| 17 | 1+(0.275−0.961i)T |
| 23 | 1+(−0.529+0.848i)T |
| 29 | 1+(0.961−0.275i)T |
| 31 | 1+(0.104−0.994i)T |
| 37 | 1+(0.951+0.309i)T |
| 41 | 1+(0.882+0.469i)T |
| 43 | 1+(−0.642+0.766i)T |
| 47 | 1+(−0.275−0.961i)T |
| 53 | 1+(0.970+0.241i)T |
| 59 | 1+(0.0348+0.999i)T |
| 61 | 1+(0.848+0.529i)T |
| 67 | 1+(−0.829+0.559i)T |
| 71 | 1+(0.997+0.0697i)T |
| 73 | 1+(0.139+0.990i)T |
| 79 | 1+(0.438+0.898i)T |
| 83 | 1+(−0.994−0.104i)T |
| 89 | 1+(−0.882+0.469i)T |
| 97 | 1+(0.829+0.559i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.96994612093315929547746457408, −23.44346666211174374579348302332, −22.41783206196092408222440943492, −21.5409268372008627832460197086, −20.97694877798481524019459171653, −20.036588006148183073030440628576, −19.245192820060040022469566378366, −18.12435306325665958434399930213, −16.817554079770591079650342385592, −16.14063963548077360188227305651, −15.56795198378373184628698492551, −14.486149671329882812517069416709, −13.91694134207793062592745676541, −13.00465200809268482134232672652, −12.38217737439959796386638365121, −10.8346578869382315955570489139, −10.00236460206257164104743833164, −8.842022421668283445519456992626, −8.01408776581529370270411301339, −7.07178461427277806313862283359, −6.16674299621347577957026895890, −4.82437534827777270891878818135, −4.02302122924991095011328779437, −3.146829177021933454948988129401, −2.13704927791420243937756321020,
0.88188812455066764008865637988, 2.544063473394946269710332189569, 2.86458324508433351561236114818, 3.954156608329161142978925403309, 5.347705002017378062781632333008, 6.17799465384430132418152917464, 7.34393275513095164823919878082, 8.366622125976650549608459825814, 9.64812536132010904417359872530, 10.07827177345176928812059906503, 11.4876590308258395117443963935, 12.3845581902267780701210060474, 13.251119004138264027145673466860, 13.5549655703522959476387370496, 14.79627120658963239950746044311, 15.50256140116586051883792221678, 16.16295075809533143609451077727, 18.115179237155745182830024535801, 18.49999294231930086228030437363, 19.55164733550181180814262629112, 20.04169591172953421605328718534, 20.989563329355732963908989432519, 21.62946755360016921203743062414, 22.75483434126327033769916767808, 23.343835402229382265498075914346