L(s) = 1 | + (0.991 + 0.130i)3-s + (0.965 + 0.258i)9-s + (−0.793 + 0.608i)11-s − 13-s + (0.258 − 0.965i)19-s + (0.991 − 0.130i)23-s + (0.923 + 0.382i)27-s + (0.382 + 0.923i)29-s + (0.130 − 0.991i)31-s + (−0.866 + 0.5i)33-s + (0.608 − 0.793i)37-s + (−0.991 − 0.130i)39-s + (−0.382 + 0.923i)41-s + (−0.707 − 0.707i)43-s + (0.5 + 0.866i)47-s + ⋯ |
L(s) = 1 | + (0.991 + 0.130i)3-s + (0.965 + 0.258i)9-s + (−0.793 + 0.608i)11-s − 13-s + (0.258 − 0.965i)19-s + (0.991 − 0.130i)23-s + (0.923 + 0.382i)27-s + (0.382 + 0.923i)29-s + (0.130 − 0.991i)31-s + (−0.866 + 0.5i)33-s + (0.608 − 0.793i)37-s + (−0.991 − 0.130i)39-s + (−0.382 + 0.923i)41-s + (−0.707 − 0.707i)43-s + (0.5 + 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.932 + 0.362i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.932 + 0.362i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.452849252 + 0.4599920375i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.452849252 + 0.4599920375i\) |
\(L(1)\) |
\(\approx\) |
\(1.452662205 + 0.1184510198i\) |
\(L(1)\) |
\(\approx\) |
\(1.452662205 + 0.1184510198i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.991 + 0.130i)T \) |
| 11 | \( 1 + (-0.793 + 0.608i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + (0.258 - 0.965i)T \) |
| 23 | \( 1 + (0.991 - 0.130i)T \) |
| 29 | \( 1 + (0.382 + 0.923i)T \) |
| 31 | \( 1 + (0.130 - 0.991i)T \) |
| 37 | \( 1 + (0.608 - 0.793i)T \) |
| 41 | \( 1 + (-0.382 + 0.923i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.258 + 0.965i)T \) |
| 59 | \( 1 + (-0.258 - 0.965i)T \) |
| 61 | \( 1 + (0.991 - 0.130i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.923 - 0.382i)T \) |
| 73 | \( 1 + (-0.130 + 0.991i)T \) |
| 79 | \( 1 + (-0.130 - 0.991i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.923 - 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.480322645104661563865649559427, −17.42558250576645954131746585121, −16.750318021176328086039733914954, −15.97333065453123283349358084713, −15.347603075895776856503445794429, −14.73400968633945215352075146729, −14.0940608953306652459804127180, −13.458603138761671332391331536774, −12.87010618332117353901029805867, −12.15564802542065673061352978759, −11.43178508527613665854515163445, −10.31792662664129540858191590891, −10.043532665452856249256311377540, −9.18907546566939937035835153420, −8.398548885925672275812254428051, −7.961043913440346053910134124403, −7.196957330042615590375189533864, −6.54939043096766341740150844828, −5.46691883819850232106877469228, −4.85957335799465827463626852729, −3.914719330221394494403728779056, −3.137959994111002633869285602221, −2.58216618541242290739088320070, −1.74953059088722076494668746551, −0.73155390188504033287023079528,
0.8184553547233068378390094020, 1.97622172363282374916947616083, 2.62336648069743452988552158066, 3.137820396399598967623285461171, 4.24722914786307708574447361675, 4.812002733924280010355725597386, 5.46139757653809688542431492496, 6.8036601347237436460580680820, 7.20777659392701308571260754421, 7.90695996481630064904432072986, 8.607998117733742472799160428504, 9.45913291345682838725064520748, 9.78914231021544918022142606340, 10.64842235084252926259290987444, 11.320961942536675889519648928215, 12.41434230718581953271756693699, 12.84764048907047013281006200921, 13.48316996515708481721640510315, 14.25881508373508337657539879034, 14.89436543256474247587934399520, 15.37615096022317200453900098877, 15.98683871783482370149616057304, 16.86198691363240984189856211895, 17.54293361902665073590270379024, 18.32593595859962457816303480684