L(s) = 1 | + (0.608 + 0.793i)3-s + (−0.258 + 0.965i)9-s + (0.130 − 0.991i)11-s − 13-s + (−0.965 − 0.258i)19-s + (−0.608 + 0.793i)23-s + (−0.923 + 0.382i)27-s + (0.382 − 0.923i)29-s + (0.793 − 0.608i)31-s + (0.866 − 0.5i)33-s + (0.991 − 0.130i)37-s + (−0.608 − 0.793i)39-s + (0.382 + 0.923i)41-s + (−0.707 + 0.707i)43-s + (−0.5 − 0.866i)47-s + ⋯ |
L(s) = 1 | + (0.608 + 0.793i)3-s + (−0.258 + 0.965i)9-s + (0.130 − 0.991i)11-s − 13-s + (−0.965 − 0.258i)19-s + (−0.608 + 0.793i)23-s + (−0.923 + 0.382i)27-s + (0.382 − 0.923i)29-s + (0.793 − 0.608i)31-s + (0.866 − 0.5i)33-s + (0.991 − 0.130i)37-s + (−0.608 − 0.793i)39-s + (0.382 + 0.923i)41-s + (−0.707 + 0.707i)43-s + (−0.5 − 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0295i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0295i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.755546318 + 0.02590609475i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.755546318 + 0.02590609475i\) |
\(L(1)\) |
\(\approx\) |
\(1.158409411 + 0.2033678125i\) |
\(L(1)\) |
\(\approx\) |
\(1.158409411 + 0.2033678125i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.608 + 0.793i)T \) |
| 11 | \( 1 + (0.130 - 0.991i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + (-0.965 - 0.258i)T \) |
| 23 | \( 1 + (-0.608 + 0.793i)T \) |
| 29 | \( 1 + (0.382 - 0.923i)T \) |
| 31 | \( 1 + (0.793 - 0.608i)T \) |
| 37 | \( 1 + (0.991 - 0.130i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.965 - 0.258i)T \) |
| 59 | \( 1 + (0.965 - 0.258i)T \) |
| 61 | \( 1 + (0.608 - 0.793i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.923 - 0.382i)T \) |
| 73 | \( 1 + (-0.793 + 0.608i)T \) |
| 79 | \( 1 + (0.793 + 0.608i)T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.923 + 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.06822843137227608509305865159, −17.63976138861893586797971217023, −16.97148030283628201447920183032, −16.14389157542078930716644724028, −15.241912449169152286978116474050, −14.52951389466027305019138754726, −14.43006336108186577568706286191, −13.3072199232533909753942797035, −12.799393344688583842554885846405, −12.105922956429721048014952407061, −11.78684000197812842299726159576, −10.408492266583276234149395551053, −10.101209536902012573588604010323, −9.086157831497573707085527597453, −8.594622412994965940868055896429, −7.76637401723248087913814693656, −7.15686732546222541191694785424, −6.5942509235790305382776821145, −5.813033055498045292961604192897, −4.71857708477423764871776075464, −4.17994619468583927241567159694, −3.126403867055457984659795008716, −2.34890863240338182910146132141, −1.861285791567378706457755490120, −0.789696332389592995525753948305,
0.528855390883200063291206195, 1.92319779748093850051725771467, 2.60914801610248087387108456097, 3.3150353332995510832573129407, 4.17997578073553460411934788144, 4.686288038417977093777398221106, 5.6154563817295776377381429012, 6.27453463064223135518176428597, 7.259241463191902310600337932064, 8.25321807898247159221739419125, 8.32844717790817606030440466192, 9.55995341648080574682007218169, 9.7562118978850166335379228975, 10.61154324559300173469947720028, 11.39628746040788172645625076370, 11.858807285847322936297029109694, 13.05247535778349040572859916437, 13.476842474103208008789921796935, 14.23312273568005257069864479572, 14.904927049217681267574108979089, 15.315454992962813686087346055017, 16.2175875672272842103155315526, 16.670120583691072225808849829023, 17.32298816890857693795951814985, 18.13716165597239889885357485410