L(s) = 1 | + (−0.258 − 0.965i)3-s + (−0.866 + 0.5i)9-s + (−0.258 − 0.965i)11-s − i·13-s + (0.866 − 0.5i)19-s + (0.258 − 0.965i)23-s + (0.707 + 0.707i)27-s + (−0.707 − 0.707i)29-s + (0.965 − 0.258i)31-s + (−0.866 + 0.5i)33-s + (0.965 + 0.258i)37-s + (−0.965 + 0.258i)39-s + (0.707 − 0.707i)41-s + 43-s + (−0.866 + 0.5i)47-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)3-s + (−0.866 + 0.5i)9-s + (−0.258 − 0.965i)11-s − i·13-s + (0.866 − 0.5i)19-s + (0.258 − 0.965i)23-s + (0.707 + 0.707i)27-s + (−0.707 − 0.707i)29-s + (0.965 − 0.258i)31-s + (−0.866 + 0.5i)33-s + (0.965 + 0.258i)37-s + (−0.965 + 0.258i)39-s + (0.707 − 0.707i)41-s + 43-s + (−0.866 + 0.5i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5148738266 - 1.466708860i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5148738266 - 1.466708860i\) |
\(L(1)\) |
\(\approx\) |
\(0.8616939238 - 0.5220050329i\) |
\(L(1)\) |
\(\approx\) |
\(0.8616939238 - 0.5220050329i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.258 - 0.965i)T \) |
| 11 | \( 1 + (-0.258 - 0.965i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.258 - 0.965i)T \) |
| 29 | \( 1 + (-0.707 - 0.707i)T \) |
| 31 | \( 1 + (0.965 - 0.258i)T \) |
| 37 | \( 1 + (0.965 + 0.258i)T \) |
| 41 | \( 1 + (0.707 - 0.707i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.965 + 0.258i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.707 + 0.707i)T \) |
| 73 | \( 1 + (-0.258 - 0.965i)T \) |
| 79 | \( 1 + (0.965 + 0.258i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.707 - 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.217530659927577517873646022887, −17.68844190505052966213542128647, −17.01890812101724174766915347785, −16.22998784652070383460208583249, −15.935905885155908741902340505023, −15.00821326409923770080214780957, −14.597135335632735007913713619016, −13.85339653372585990191105801539, −13.027329355235071574521613040008, −12.14923047541144794559941131733, −11.6125412712733576272366406891, −10.98471359699351562259484734111, −10.173626634669298072007830132760, −9.503828238439679544463518614421, −9.22432122948431244827609113048, −8.16537576195614235735493368067, −7.40445358268276627342766633750, −6.64793782293565080402485086539, −5.7701463108122523235408938344, −5.11969069770476925790001911011, −4.42607739599566314387902383479, −3.7936407515661319002585578303, −2.959223325123952250041879451853, −2.05172931018773085287627835954, −1.04086110012032184400242085107,
0.58728357359915641943468034977, 0.96298608973516239583945008549, 2.33786434008047797945513729807, 2.76948502525624859040245175805, 3.6597337692783585262287678711, 4.79519385818088621528800101305, 5.551176972673003464231868504019, 6.06901322327842059363372605567, 6.81094674319900956388859796967, 7.70674868556258465975503932174, 8.07687328316621794813382656282, 8.84013781979779668707055275237, 9.716412604059432540359613158753, 10.650512020111339876457137478738, 11.16686419824685692245053325700, 11.82927176953005877901876170757, 12.55970681352143842268141527028, 13.29373061833965705569785195457, 13.57384342813256241678019958247, 14.47584458564995891232174494534, 15.12706068162717495534519520911, 16.099994742151318633213682901442, 16.50302800238815692430380233222, 17.46880257174020782164036519416, 17.82337620927128638056923246649