L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + (0.382 − 0.923i)5-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.382 + 0.923i)10-s + (0.923 − 0.382i)11-s + i·13-s + (0.923 + 0.382i)14-s − 16-s + (0.707 − 0.707i)19-s + (−0.923 − 0.382i)20-s + (−0.382 + 0.923i)22-s + (−0.923 + 0.382i)23-s + (−0.707 − 0.707i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + (0.382 − 0.923i)5-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.382 + 0.923i)10-s + (0.923 − 0.382i)11-s + i·13-s + (0.923 + 0.382i)14-s − 16-s + (0.707 − 0.707i)19-s + (−0.923 − 0.382i)20-s + (−0.382 + 0.923i)22-s + (−0.923 + 0.382i)23-s + (−0.707 − 0.707i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6422971005 - 0.06654144815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6422971005 - 0.06654144815i\) |
\(L(1)\) |
\(\approx\) |
\(0.7620575145 + 0.01144992888i\) |
\(L(1)\) |
\(\approx\) |
\(0.7620575145 + 0.01144992888i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.382 - 0.923i)T \) |
| 7 | \( 1 + (-0.382 - 0.923i)T \) |
| 11 | \( 1 + (0.923 - 0.382i)T \) |
| 13 | \( 1 + iT \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (-0.923 + 0.382i)T \) |
| 29 | \( 1 + (-0.382 + 0.923i)T \) |
| 31 | \( 1 + (-0.923 - 0.382i)T \) |
| 37 | \( 1 + (0.923 + 0.382i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (0.707 + 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.707 + 0.707i)T \) |
| 61 | \( 1 + (0.382 + 0.923i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.923 - 0.382i)T \) |
| 73 | \( 1 + (-0.382 + 0.923i)T \) |
| 79 | \( 1 + (-0.923 + 0.382i)T \) |
| 83 | \( 1 + (0.707 - 0.707i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.382 - 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−33.963624863128703659136886425838, −32.39172656955133629325101437768, −30.93453089127906769123467870657, −30.10421497787977387555148132097, −29.071493709927190311922076545012, −27.93824736635855733236106774782, −26.9130042109762610823806052741, −25.64257100177467439007286200849, −24.96607134774232818625710116350, −22.50138686741207894383508428738, −22.13941808991746811235623839395, −20.64982521756100334518083453398, −19.37976867488770354327272414669, −18.3606542891573468562317933240, −17.493948646885837867029172205410, −15.893574542803742974517553646565, −14.42547262407925089824357953043, −12.74400064264778801391656763734, −11.61413315627227856141281206454, −10.22696643579947789845017066664, −9.24633477547262585698717682051, −7.62706380484569886950337321570, −6.046134243508905603972434008340, −3.52700503790398479843443663314, −2.15923565641919628858196631835,
1.31456830312164006279266676540, 4.3569764422372164374959043140, 6.01360098702963944515865622564, 7.32839385904376053694182451755, 8.92804305474790553488902391856, 9.76666529811018956690511820504, 11.43426748560959967037499820450, 13.373348510216713533974361906382, 14.3669441944656154508416238826, 16.243219349831302474533948028955, 16.7264206884954923211367367412, 17.92852180599872612659552351042, 19.51843518402446275254752822329, 20.2704722403072661337798529060, 22.004811289707893837447533704001, 23.64364147337621759277428220146, 24.33744482490195987490997937964, 25.57871947188682455971753964017, 26.57774100549286290877116336537, 27.74461773940516819775928774381, 28.80110632129319448879880221828, 29.77220635140881924926484955616, 31.69570702502696844662355249953, 32.81329705525815498685765841543, 33.30936238106885603192412137554