Properties

Label 1-51-51.20-r0-0-0
Degree 11
Conductor 5151
Sign 0.9780.204i0.978 - 0.204i
Analytic cond. 0.2368430.236843
Root an. cond. 0.2368430.236843
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s i·4-s + (0.382 − 0.923i)5-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.382 + 0.923i)10-s + (0.923 − 0.382i)11-s + i·13-s + (0.923 + 0.382i)14-s − 16-s + (0.707 − 0.707i)19-s + (−0.923 − 0.382i)20-s + (−0.382 + 0.923i)22-s + (−0.923 + 0.382i)23-s + (−0.707 − 0.707i)25-s + (−0.707 − 0.707i)26-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)2-s i·4-s + (0.382 − 0.923i)5-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.382 + 0.923i)10-s + (0.923 − 0.382i)11-s + i·13-s + (0.923 + 0.382i)14-s − 16-s + (0.707 − 0.707i)19-s + (−0.923 − 0.382i)20-s + (−0.382 + 0.923i)22-s + (−0.923 + 0.382i)23-s + (−0.707 − 0.707i)25-s + (−0.707 − 0.707i)26-s + ⋯

Functional equation

Λ(s)=(51s/2ΓR(s)L(s)=((0.9780.204i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(51s/2ΓR(s)L(s)=((0.9780.204i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 5151    =    3173 \cdot 17
Sign: 0.9780.204i0.978 - 0.204i
Analytic conductor: 0.2368430.236843
Root analytic conductor: 0.2368430.236843
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ51(20,)\chi_{51} (20, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 51, (0: ), 0.9780.204i)(1,\ 51,\ (0:\ ),\ 0.978 - 0.204i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.64229710050.06654144815i0.6422971005 - 0.06654144815i
L(12)L(\frac12) \approx 0.64229710050.06654144815i0.6422971005 - 0.06654144815i
L(1)L(1) \approx 0.7620575145+0.01144992888i0.7620575145 + 0.01144992888i
L(1)L(1) \approx 0.7620575145+0.01144992888i0.7620575145 + 0.01144992888i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
17 1 1
good2 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
5 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
7 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
11 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
13 1+iT 1 + iT
19 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
23 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
29 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
31 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
37 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
41 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
43 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
47 1iT 1 - iT
53 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
59 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
61 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
67 1T 1 - T
71 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
73 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
79 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1+iT 1 + iT
97 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−33.963624863128703659136886425838, −32.39172656955133629325101437768, −30.93453089127906769123467870657, −30.10421497787977387555148132097, −29.071493709927190311922076545012, −27.93824736635855733236106774782, −26.9130042109762610823806052741, −25.64257100177467439007286200849, −24.96607134774232818625710116350, −22.50138686741207894383508428738, −22.13941808991746811235623839395, −20.64982521756100334518083453398, −19.37976867488770354327272414669, −18.3606542891573468562317933240, −17.493948646885837867029172205410, −15.893574542803742974517553646565, −14.42547262407925089824357953043, −12.74400064264778801391656763734, −11.61413315627227856141281206454, −10.22696643579947789845017066664, −9.24633477547262585698717682051, −7.62706380484569886950337321570, −6.046134243508905603972434008340, −3.52700503790398479843443663314, −2.15923565641919628858196631835, 1.31456830312164006279266676540, 4.3569764422372164374959043140, 6.01360098702963944515865622564, 7.32839385904376053694182451755, 8.92804305474790553488902391856, 9.76666529811018956690511820504, 11.43426748560959967037499820450, 13.373348510216713533974361906382, 14.3669441944656154508416238826, 16.243219349831302474533948028955, 16.7264206884954923211367367412, 17.92852180599872612659552351042, 19.51843518402446275254752822329, 20.2704722403072661337798529060, 22.004811289707893837447533704001, 23.64364147337621759277428220146, 24.33744482490195987490997937964, 25.57871947188682455971753964017, 26.57774100549286290877116336537, 27.74461773940516819775928774381, 28.80110632129319448879880221828, 29.77220635140881924926484955616, 31.69570702502696844662355249953, 32.81329705525815498685765841543, 33.30936238106885603192412137554

Graph of the ZZ-function along the critical line