L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + (0.382 − 0.923i)5-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.382 + 0.923i)10-s + (0.923 − 0.382i)11-s + i·13-s + (0.923 + 0.382i)14-s − 16-s + (0.707 − 0.707i)19-s + (−0.923 − 0.382i)20-s + (−0.382 + 0.923i)22-s + (−0.923 + 0.382i)23-s + (−0.707 − 0.707i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + (0.382 − 0.923i)5-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.382 + 0.923i)10-s + (0.923 − 0.382i)11-s + i·13-s + (0.923 + 0.382i)14-s − 16-s + (0.707 − 0.707i)19-s + (−0.923 − 0.382i)20-s + (−0.382 + 0.923i)22-s + (−0.923 + 0.382i)23-s + (−0.707 − 0.707i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
Λ(s)=(=(51s/2ΓR(s)L(s)(0.978−0.204i)Λ(1−s)
Λ(s)=(=(51s/2ΓR(s)L(s)(0.978−0.204i)Λ(1−s)
Degree: |
1 |
Conductor: |
51
= 3⋅17
|
Sign: |
0.978−0.204i
|
Analytic conductor: |
0.236843 |
Root analytic conductor: |
0.236843 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(20,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 51, (0: ), 0.978−0.204i)
|
Particular Values
L(21) |
≈ |
0.6422971005−0.06654144815i |
L(21) |
≈ |
0.6422971005−0.06654144815i |
L(1) |
≈ |
0.7620575145+0.01144992888i |
L(1) |
≈ |
0.7620575145+0.01144992888i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1 |
good | 2 | 1+(−0.707+0.707i)T |
| 5 | 1+(0.382−0.923i)T |
| 7 | 1+(−0.382−0.923i)T |
| 11 | 1+(0.923−0.382i)T |
| 13 | 1+iT |
| 19 | 1+(0.707−0.707i)T |
| 23 | 1+(−0.923+0.382i)T |
| 29 | 1+(−0.382+0.923i)T |
| 31 | 1+(−0.923−0.382i)T |
| 37 | 1+(0.923+0.382i)T |
| 41 | 1+(0.382+0.923i)T |
| 43 | 1+(0.707+0.707i)T |
| 47 | 1−iT |
| 53 | 1+(−0.707+0.707i)T |
| 59 | 1+(0.707+0.707i)T |
| 61 | 1+(0.382+0.923i)T |
| 67 | 1−T |
| 71 | 1+(−0.923−0.382i)T |
| 73 | 1+(−0.382+0.923i)T |
| 79 | 1+(−0.923+0.382i)T |
| 83 | 1+(0.707−0.707i)T |
| 89 | 1+iT |
| 97 | 1+(0.382−0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−33.963624863128703659136886425838, −32.39172656955133629325101437768, −30.93453089127906769123467870657, −30.10421497787977387555148132097, −29.071493709927190311922076545012, −27.93824736635855733236106774782, −26.9130042109762610823806052741, −25.64257100177467439007286200849, −24.96607134774232818625710116350, −22.50138686741207894383508428738, −22.13941808991746811235623839395, −20.64982521756100334518083453398, −19.37976867488770354327272414669, −18.3606542891573468562317933240, −17.493948646885837867029172205410, −15.893574542803742974517553646565, −14.42547262407925089824357953043, −12.74400064264778801391656763734, −11.61413315627227856141281206454, −10.22696643579947789845017066664, −9.24633477547262585698717682051, −7.62706380484569886950337321570, −6.046134243508905603972434008340, −3.52700503790398479843443663314, −2.15923565641919628858196631835,
1.31456830312164006279266676540, 4.3569764422372164374959043140, 6.01360098702963944515865622564, 7.32839385904376053694182451755, 8.92804305474790553488902391856, 9.76666529811018956690511820504, 11.43426748560959967037499820450, 13.373348510216713533974361906382, 14.3669441944656154508416238826, 16.243219349831302474533948028955, 16.7264206884954923211367367412, 17.92852180599872612659552351042, 19.51843518402446275254752822329, 20.2704722403072661337798529060, 22.004811289707893837447533704001, 23.64364147337621759277428220146, 24.33744482490195987490997937964, 25.57871947188682455971753964017, 26.57774100549286290877116336537, 27.74461773940516819775928774381, 28.80110632129319448879880221828, 29.77220635140881924926484955616, 31.69570702502696844662355249953, 32.81329705525815498685765841543, 33.30936238106885603192412137554