Properties

Label 1-51-51.26-r1-0-0
Degree 11
Conductor 5151
Sign 0.9980.0465i-0.998 - 0.0465i
Analytic cond. 5.480715.48071
Root an. cond. 5.480715.48071
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)7-s i·8-s + (−0.707 + 0.707i)10-s + (−0.707 + 0.707i)11-s − 13-s + (−0.707 − 0.707i)14-s + 16-s i·19-s + (−0.707 − 0.707i)20-s + (−0.707 − 0.707i)22-s + (−0.707 + 0.707i)23-s + i·25-s i·26-s + ⋯
L(s)  = 1  + i·2-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)7-s i·8-s + (−0.707 + 0.707i)10-s + (−0.707 + 0.707i)11-s − 13-s + (−0.707 − 0.707i)14-s + 16-s i·19-s + (−0.707 − 0.707i)20-s + (−0.707 − 0.707i)22-s + (−0.707 + 0.707i)23-s + i·25-s i·26-s + ⋯

Functional equation

Λ(s)=(51s/2ΓR(s+1)L(s)=((0.9980.0465i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0465i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(51s/2ΓR(s+1)L(s)=((0.9980.0465i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.998 - 0.0465i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 5151    =    3173 \cdot 17
Sign: 0.9980.0465i-0.998 - 0.0465i
Analytic conductor: 5.480715.48071
Root analytic conductor: 5.480715.48071
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ51(26,)\chi_{51} (26, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 51, (1: ), 0.9980.0465i)(1,\ 51,\ (1:\ ),\ -0.998 - 0.0465i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.02302884431+0.9896645645i0.02302884431 + 0.9896645645i
L(12)L(\frac12) \approx 0.02302884431+0.9896645645i0.02302884431 + 0.9896645645i
L(1)L(1) \approx 0.5925173425+0.6503920497i0.5925173425 + 0.6503920497i
L(1)L(1) \approx 0.5925173425+0.6503920497i0.5925173425 + 0.6503920497i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
17 1 1
good2 1+iT 1 + iT
5 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
7 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
11 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
13 1T 1 - T
19 1iT 1 - iT
23 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
29 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
31 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
37 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
41 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
43 1+iT 1 + iT
47 1+T 1 + T
53 1+iT 1 + iT
59 1iT 1 - iT
61 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
67 1+T 1 + T
71 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
73 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
79 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
83 1+iT 1 + iT
89 1+T 1 + T
97 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−32.23079530163812667142659223924, −31.837621881382426494162297101794, −30.10760518126745989784517051990, −29.20991019852028493389281768236, −28.59996338299064701999068621019, −27.08403482655871180266936656829, −26.1417885786690683367843881237, −24.53695222733646442118264787044, −23.22650241483615758346768671814, −21.99665976458978875229489899537, −20.9414784630429538242686965597, −19.96875749646952332430813109562, −18.79725703263568690964219712102, −17.3940341629849484403098168, −16.37239219776283592502667052129, −14.163670537860925838273132636079, −13.20249564347370590840733592065, −12.196786681686833992006974727038, −10.423663252825610686600457377145, −9.64011025553872299527667341078, −8.10893364214305493709549982982, −5.81564977993107877714449946964, −4.27693333747464259725788792485, −2.50670389499911364794201130682, −0.560656348539303105788978617580, 2.74573570283124026880265507201, 4.99879525547512101527739317690, 6.29697733053697461875341065917, 7.4440483181739074149100217333, 9.238386568029485534904120908684, 10.182067343168754057968974021620, 12.44169838768633531622564169527, 13.656268305989007198037692775139, 14.930178140953442875724069704302, 15.84174818756594733128327397170, 17.41696439933236752639251963942, 18.22172907780401786757006331170, 19.470618145575773585715868045815, 21.61867791759719052645361949915, 22.30503639446707412884214562685, 23.52122292268362702848812300888, 24.93703123018965468704997961812, 25.75980348021679468933203244156, 26.573622992611084673984196974708, 28.08316826921019740723404911838, 29.22446376383010879353145064174, 30.74243710223362401262122147467, 31.840979828676910483160680825330, 32.86168047098269501867761165076, 34.04784741945525695523022861511

Graph of the ZZ-function along the critical line