Properties

Label 1-520-520.123-r1-0-0
Degree 11
Conductor 520520
Sign 0.5580.829i-0.558 - 0.829i
Analytic cond. 55.881755.8817
Root an. cond. 55.881755.8817
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)3-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s i·21-s + (0.866 − 0.5i)23-s i·27-s + (−0.5 − 0.866i)29-s i·31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)41-s + (0.866 + 0.5i)43-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)3-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s i·21-s + (0.866 − 0.5i)23-s i·27-s + (−0.5 − 0.866i)29-s i·31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)41-s + (0.866 + 0.5i)43-s + ⋯

Functional equation

Λ(s)=(520s/2ΓR(s+1)L(s)=((0.5580.829i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(520s/2ΓR(s+1)L(s)=((0.5580.829i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 520520    =    235132^{3} \cdot 5 \cdot 13
Sign: 0.5580.829i-0.558 - 0.829i
Analytic conductor: 55.881755.8817
Root analytic conductor: 55.881755.8817
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ520(123,)\chi_{520} (123, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 520, (1: ), 0.5580.829i)(1,\ 520,\ (1:\ ),\ -0.558 - 0.829i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.3042454322.449312021i1.304245432 - 2.449312021i
L(12)L(\frac12) \approx 1.3042454322.449312021i1.304245432 - 2.449312021i
L(1)L(1) \approx 1.3617800250.6730081530i1.361780025 - 0.6730081530i
L(1)L(1) \approx 1.3617800250.6730081530i1.361780025 - 0.6730081530i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
11 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
17 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
19 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
23 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
29 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
31 1iT 1 - iT
37 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
41 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
43 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
47 1T 1 - T
53 1iT 1 - iT
59 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
61 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
67 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
71 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
73 1T 1 - T
79 1+T 1 + T
83 1+T 1 + T
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.77359292232714143391574479333, −22.47608031297158998412574581503, −21.87104390891581776823788836199, −21.07952377120527745024516442490, −20.32422612919653750547107695360, −19.424783340916188700753798740012, −18.7802324071622867830215083686, −17.66965139807428601327834298745, −16.81221738102755126131191424012, −15.70825616872633954307717677873, −14.87896287422200218061234238798, −14.592613054572653508695733349680, −13.33337002454861408243848402183, −12.515685720272792376105825096335, −11.394575449690213985595018088110, −10.53739678565581362571974781392, −9.31372870782373480492577463355, −8.883107571663334770655310029838, −7.934657487909729686197701748027, −6.84443320574512924177904016608, −5.60539430132170016942202624114, −4.51183020652589788230474644098, −3.70924313875084204398289701920, −2.392133693151336590880811926859, −1.64421771867151098377724345601, 0.59835288864972498728627405, 1.63238358796977166125121417296, 2.81410085901913442771566811312, 3.91220440458630257758152297284, 4.75849754803225631675786883651, 6.48938782912598550307571335914, 6.97754550021958572288958925842, 8.14148170779946202285743992436, 8.803002782075202732023899984649, 9.76637068351208417972823309719, 10.961028110345439342770049776818, 11.72194347269559904361607803452, 13.03066873700883512931547161340, 13.52785688997862777284323689226, 14.47543608352016542804832212444, 15.029139534410500014680203874241, 16.26616878000587117145891654658, 17.2517748943842509414996201549, 17.93240619179196208250668603963, 19.06601943211990563575831279823, 19.62197123437172493098742312002, 20.45815929694562080861775379843, 21.12618566966737446414625215495, 22.16846225197706753199543532114, 23.23200664066446945281065867306

Graph of the ZZ-function along the critical line