L(s) = 1 | + (0.866 − 0.5i)3-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s − i·21-s + (0.866 − 0.5i)23-s − i·27-s + (−0.5 − 0.866i)29-s − i·31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)41-s + (0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s − i·21-s + (0.866 − 0.5i)23-s − i·27-s + (−0.5 − 0.866i)29-s − i·31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)41-s + (0.866 + 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.304245432 - 2.449312021i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.304245432 - 2.449312021i\) |
\(L(1)\) |
\(\approx\) |
\(1.361780025 - 0.6730081530i\) |
\(L(1)\) |
\(\approx\) |
\(1.361780025 - 0.6730081530i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.77359292232714143391574479333, −22.47608031297158998412574581503, −21.87104390891581776823788836199, −21.07952377120527745024516442490, −20.32422612919653750547107695360, −19.424783340916188700753798740012, −18.7802324071622867830215083686, −17.66965139807428601327834298745, −16.81221738102755126131191424012, −15.70825616872633954307717677873, −14.87896287422200218061234238798, −14.592613054572653508695733349680, −13.33337002454861408243848402183, −12.515685720272792376105825096335, −11.394575449690213985595018088110, −10.53739678565581362571974781392, −9.31372870782373480492577463355, −8.883107571663334770655310029838, −7.934657487909729686197701748027, −6.84443320574512924177904016608, −5.60539430132170016942202624114, −4.51183020652589788230474644098, −3.70924313875084204398289701920, −2.392133693151336590880811926859, −1.64421771867151098377724345601,
0.59835288864972498728627405, 1.63238358796977166125121417296, 2.81410085901913442771566811312, 3.91220440458630257758152297284, 4.75849754803225631675786883651, 6.48938782912598550307571335914, 6.97754550021958572288958925842, 8.14148170779946202285743992436, 8.803002782075202732023899984649, 9.76637068351208417972823309719, 10.961028110345439342770049776818, 11.72194347269559904361607803452, 13.03066873700883512931547161340, 13.52785688997862777284323689226, 14.47543608352016542804832212444, 15.029139534410500014680203874241, 16.26616878000587117145891654658, 17.2517748943842509414996201549, 17.93240619179196208250668603963, 19.06601943211990563575831279823, 19.62197123437172493098742312002, 20.45815929694562080861775379843, 21.12618566966737446414625215495, 22.16846225197706753199543532114, 23.23200664066446945281065867306