L(s) = 1 | + (0.866 − 0.5i)3-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s − i·21-s + (0.866 − 0.5i)23-s − i·27-s + (−0.5 − 0.866i)29-s − i·31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)41-s + (0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s − i·21-s + (0.866 − 0.5i)23-s − i·27-s + (−0.5 − 0.866i)29-s − i·31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.866 + 0.5i)41-s + (0.866 + 0.5i)43-s + ⋯ |
Λ(s)=(=(520s/2ΓR(s+1)L(s)(−0.558−0.829i)Λ(1−s)
Λ(s)=(=(520s/2ΓR(s+1)L(s)(−0.558−0.829i)Λ(1−s)
Degree: |
1 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
−0.558−0.829i
|
Analytic conductor: |
55.8817 |
Root analytic conductor: |
55.8817 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(123,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 520, (1: ), −0.558−0.829i)
|
Particular Values
L(21) |
≈ |
1.304245432−2.449312021i |
L(21) |
≈ |
1.304245432−2.449312021i |
L(1) |
≈ |
1.361780025−0.6730081530i |
L(1) |
≈ |
1.361780025−0.6730081530i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1 |
good | 3 | 1+(0.866−0.5i)T |
| 7 | 1+(0.5−0.866i)T |
| 11 | 1+(0.866−0.5i)T |
| 17 | 1+(−0.866−0.5i)T |
| 19 | 1+(−0.866−0.5i)T |
| 23 | 1+(0.866−0.5i)T |
| 29 | 1+(−0.5−0.866i)T |
| 31 | 1−iT |
| 37 | 1+(0.5+0.866i)T |
| 41 | 1+(−0.866+0.5i)T |
| 43 | 1+(0.866+0.5i)T |
| 47 | 1−T |
| 53 | 1−iT |
| 59 | 1+(0.866+0.5i)T |
| 61 | 1+(0.5−0.866i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1+(−0.866−0.5i)T |
| 73 | 1−T |
| 79 | 1+T |
| 83 | 1+T |
| 89 | 1+(−0.866+0.5i)T |
| 97 | 1+(0.5−0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.77359292232714143391574479333, −22.47608031297158998412574581503, −21.87104390891581776823788836199, −21.07952377120527745024516442490, −20.32422612919653750547107695360, −19.424783340916188700753798740012, −18.7802324071622867830215083686, −17.66965139807428601327834298745, −16.81221738102755126131191424012, −15.70825616872633954307717677873, −14.87896287422200218061234238798, −14.592613054572653508695733349680, −13.33337002454861408243848402183, −12.515685720272792376105825096335, −11.394575449690213985595018088110, −10.53739678565581362571974781392, −9.31372870782373480492577463355, −8.883107571663334770655310029838, −7.934657487909729686197701748027, −6.84443320574512924177904016608, −5.60539430132170016942202624114, −4.51183020652589788230474644098, −3.70924313875084204398289701920, −2.392133693151336590880811926859, −1.64421771867151098377724345601,
0.59835288864972498728627405, 1.63238358796977166125121417296, 2.81410085901913442771566811312, 3.91220440458630257758152297284, 4.75849754803225631675786883651, 6.48938782912598550307571335914, 6.97754550021958572288958925842, 8.14148170779946202285743992436, 8.803002782075202732023899984649, 9.76637068351208417972823309719, 10.961028110345439342770049776818, 11.72194347269559904361607803452, 13.03066873700883512931547161340, 13.52785688997862777284323689226, 14.47543608352016542804832212444, 15.029139534410500014680203874241, 16.26616878000587117145891654658, 17.2517748943842509414996201549, 17.93240619179196208250668603963, 19.06601943211990563575831279823, 19.62197123437172493098742312002, 20.45815929694562080861775379843, 21.12618566966737446414625215495, 22.16846225197706753199543532114, 23.23200664066446945281065867306