L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)11-s + (0.866 − 0.5i)17-s + (−0.866 + 0.5i)19-s − i·21-s + (−0.866 − 0.5i)23-s − i·27-s + (−0.5 + 0.866i)29-s − i·31-s + (−0.5 − 0.866i)33-s + (−0.5 + 0.866i)37-s + (−0.866 − 0.5i)41-s + (−0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)11-s + (0.866 − 0.5i)17-s + (−0.866 + 0.5i)19-s − i·21-s + (−0.866 − 0.5i)23-s − i·27-s + (−0.5 + 0.866i)29-s − i·31-s + (−0.5 − 0.866i)33-s + (−0.5 + 0.866i)37-s + (−0.866 − 0.5i)41-s + (−0.866 + 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.492 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.492 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6636449158 + 0.3869869330i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6636449158 + 0.3869869330i\) |
\(L(1)\) |
\(\approx\) |
\(0.7265986675 - 0.09458026511i\) |
\(L(1)\) |
\(\approx\) |
\(0.7265986675 - 0.09458026511i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.866 - 0.5i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.15711381502983419708255455797, −22.11737363735985194235170948289, −21.77038412066868538425815958928, −20.96837051509638667997825940993, −19.671309248951886153925442658234, −18.96407320836640349049199447535, −18.03567472329474650419818560488, −17.0947739586967297097193874063, −16.48304423275552298497319113981, −15.541865284507681905987115509832, −14.90769262395361645855257501148, −13.73652980739283025671428808389, −12.48501047125533556928936882207, −11.99767783764473353296571479223, −11.072739204705681359621597088345, −10.09934976977758331189909878587, −9.27884882784566253948609640892, −8.40476055823002741646050051855, −6.90532112515624693582180064726, −6.05407138218252033419135812345, −5.43241337313868144820743911, −4.14257312719607051742372092721, −3.289446203643195813809376519010, −1.73580786022444127632088196002, −0.274160252048138972248955797836,
0.90744489531020905139632983594, 1.97859557052017426063146354644, 3.62060200655966760818896619328, 4.52933397187883971285121491851, 5.71223492922249817082316495336, 6.65679819038091384567082706367, 7.25584623265321186630208274876, 8.35052044936438626950448190159, 9.81438168908252408654724181413, 10.33862946528627349338529800283, 11.4678172456547338710734292497, 12.22523161349163296482410573376, 13.012631114290699640693886309129, 13.92678374753089733993449440638, 14.83402102991241313510256382639, 16.17906745016025737284686749840, 16.77571824438346819582938383139, 17.36016860381824870351373165067, 18.433395764558228856126122786632, 19.12815303332175407415851657811, 20.05675130473476274673557187150, 20.879208538686423712937482654954, 22.25799008018673869695307785991, 22.52197868080147964763821920714, 23.52599078551723180958146220447