L(s) = 1 | + (0.826 + 0.563i)2-s + (0.623 − 0.781i)3-s + (0.365 + 0.930i)4-s + (0.955 + 0.294i)5-s + (0.955 − 0.294i)6-s + (0.365 − 0.930i)7-s + (−0.222 + 0.974i)8-s + (−0.222 − 0.974i)9-s + (0.623 + 0.781i)10-s + (−0.5 − 0.866i)11-s + (0.955 + 0.294i)12-s + (0.0747 + 0.997i)13-s + (0.826 − 0.563i)14-s + (0.826 − 0.563i)15-s + (−0.733 + 0.680i)16-s + (−0.733 + 0.680i)17-s + ⋯ |
L(s) = 1 | + (0.826 + 0.563i)2-s + (0.623 − 0.781i)3-s + (0.365 + 0.930i)4-s + (0.955 + 0.294i)5-s + (0.955 − 0.294i)6-s + (0.365 − 0.930i)7-s + (−0.222 + 0.974i)8-s + (−0.222 − 0.974i)9-s + (0.623 + 0.781i)10-s + (−0.5 − 0.866i)11-s + (0.955 + 0.294i)12-s + (0.0747 + 0.997i)13-s + (0.826 − 0.563i)14-s + (0.826 − 0.563i)15-s + (−0.733 + 0.680i)16-s + (−0.733 + 0.680i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.190376515 + 0.1715713218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.190376515 + 0.1715713218i\) |
\(L(1)\) |
\(\approx\) |
\(2.253637072 + 0.1732705043i\) |
\(L(1)\) |
\(\approx\) |
\(2.253637072 + 0.1732705043i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 547 | \( 1 \) |
good | 2 | \( 1 + (0.826 + 0.563i)T \) |
| 3 | \( 1 + (0.623 - 0.781i)T \) |
| 5 | \( 1 + (0.955 + 0.294i)T \) |
| 7 | \( 1 + (0.365 - 0.930i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.0747 + 0.997i)T \) |
| 17 | \( 1 + (-0.733 + 0.680i)T \) |
| 19 | \( 1 + (0.826 - 0.563i)T \) |
| 23 | \( 1 + (0.826 - 0.563i)T \) |
| 29 | \( 1 + (-0.222 + 0.974i)T \) |
| 31 | \( 1 + (0.623 - 0.781i)T \) |
| 37 | \( 1 + (-0.733 + 0.680i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.365 - 0.930i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.0747 + 0.997i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.733 + 0.680i)T \) |
| 67 | \( 1 + (-0.733 + 0.680i)T \) |
| 71 | \( 1 + (-0.733 + 0.680i)T \) |
| 73 | \( 1 + (0.826 + 0.563i)T \) |
| 79 | \( 1 + (0.623 + 0.781i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.826 - 0.563i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.83794270592362211772552438362, −22.517239013141798764461449331876, −21.38887007936881420004646293040, −21.05976274922637340503384812872, −20.36027175330014265656087967006, −19.57388688418723893218810274304, −18.33353334123143744403140589066, −17.69844567778795522270609240404, −16.24063293872172257672993524870, −15.38063900502948316750364763285, −14.93387931550252151426863109729, −13.883560015542754052039677513046, −13.2518097356317221154033612574, −12.36287432070693064974755276563, −11.29536849134795405962338249912, −10.278166569659088833461784015209, −9.66295002369943201487640101765, −8.88086119664684686480052751627, −7.61956690474638981100143158442, −6.10452856600170752647355711282, −5.05276841456149886735678787408, −4.89340897643932032718044292389, −3.265015418395953552439140968094, −2.5197527093108023538261084401, −1.657717446680698740055901126734,
1.4392708154942314780942385956, 2.54092706106449090204585566624, 3.44161804885907100315061330636, 4.62835078507671249517153231194, 5.79625579216885136638218524677, 6.73557194805141998726009040857, 7.22054574990556879101848362406, 8.39201047804382350529420567915, 9.12783716991760636981208798979, 10.64526170555989467324210512183, 11.45165883651249845861325387415, 12.69540871332392257605997935191, 13.582743437655193306126576523978, 13.7854786653385056380988632668, 14.55960796602946213921124901011, 15.555018905996537733623442564860, 16.79575053652030216609922850748, 17.345003496631951335260734541449, 18.26109364628745484031925408041, 19.16091172499221993453213208766, 20.39023573320116925752209111752, 20.89709156151482918407330856961, 21.758664717173912476583899107253, 22.61281914406163326882107903935, 23.82765921589526435787254726850