L(s) = 1 | + (0.978 + 0.205i)2-s + (0.623 + 0.781i)3-s + (0.915 + 0.402i)4-s + (0.813 − 0.582i)5-s + (0.449 + 0.893i)6-s + (−0.792 + 0.609i)7-s + (0.813 + 0.582i)8-s + (−0.222 + 0.974i)9-s + (0.915 − 0.402i)10-s + (−0.354 + 0.935i)11-s + (0.256 + 0.966i)12-s + (−0.900 + 0.433i)13-s + (−0.900 + 0.433i)14-s + (0.962 + 0.272i)15-s + (0.675 + 0.736i)16-s + (0.990 − 0.137i)17-s + ⋯ |
L(s) = 1 | + (0.978 + 0.205i)2-s + (0.623 + 0.781i)3-s + (0.915 + 0.402i)4-s + (0.813 − 0.582i)5-s + (0.449 + 0.893i)6-s + (−0.792 + 0.609i)7-s + (0.813 + 0.582i)8-s + (−0.222 + 0.974i)9-s + (0.915 − 0.402i)10-s + (−0.354 + 0.935i)11-s + (0.256 + 0.966i)12-s + (−0.900 + 0.433i)13-s + (−0.900 + 0.433i)14-s + (0.962 + 0.272i)15-s + (0.675 + 0.736i)16-s + (0.990 − 0.137i)17-s + ⋯ |
Λ(s)=(=(547s/2ΓR(s)L(s)(0.0401+0.999i)Λ(1−s)
Λ(s)=(=(547s/2ΓR(s)L(s)(0.0401+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
547
|
Sign: |
0.0401+0.999i
|
Analytic conductor: |
2.54025 |
Root analytic conductor: |
2.54025 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ547(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 547, (0: ), 0.0401+0.999i)
|
Particular Values
L(21) |
≈ |
2.293220930+2.202994194i |
L(21) |
≈ |
2.293220930+2.202994194i |
L(1) |
≈ |
2.031703155+1.033986391i |
L(1) |
≈ |
2.031703155+1.033986391i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 547 | 1 |
good | 2 | 1+(0.978+0.205i)T |
| 3 | 1+(0.623+0.781i)T |
| 5 | 1+(0.813−0.582i)T |
| 7 | 1+(−0.792+0.609i)T |
| 11 | 1+(−0.354+0.935i)T |
| 13 | 1+(−0.900+0.433i)T |
| 17 | 1+(0.990−0.137i)T |
| 19 | 1+(−0.868−0.495i)T |
| 23 | 1+(−0.539−0.842i)T |
| 29 | 1+(−0.994+0.103i)T |
| 31 | 1+(0.997−0.0689i)T |
| 37 | 1+(0.940+0.338i)T |
| 41 | 1+T |
| 43 | 1+(0.188−0.982i)T |
| 47 | 1+(0.120−0.992i)T |
| 53 | 1+(0.962+0.272i)T |
| 59 | 1+(0.568−0.822i)T |
| 61 | 1+(−0.0172−0.999i)T |
| 67 | 1+(0.256+0.966i)T |
| 71 | 1+(−0.928+0.370i)T |
| 73 | 1+(0.962−0.272i)T |
| 79 | 1+(0.188−0.982i)T |
| 83 | 1+(−0.748−0.663i)T |
| 89 | 1+(−0.0172+0.999i)T |
| 97 | 1+(0.725+0.688i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.097597205200112232751459815202, −22.489298252302483659975672849294, −21.364605603518779393288745028110, −20.93827827704752239986024408487, −19.64076856366144277625578723547, −19.330858682281662743820875463613, −18.40798928087324301318937397923, −17.21768777105049076757952385527, −16.37657425943818086102710156488, −15.1110555024935201695318745049, −14.40732862360812871984887482016, −13.73529214547499725380847272049, −13.05783150334410602411603077878, −12.42376755313896238250464609046, −11.2093330879078638615697273271, −10.18871775236918604560478549769, −9.55899131519347467405071397571, −7.89040139806581663697560944576, −7.2165746272020846251480441463, −6.11333762281037836011667811629, −5.737541921175722355501488984149, −3.97595173461688436627314721751, −3.05428264708708474722940988221, −2.445454330557510363520688080749, −1.14657206094188044800852600102,
2.21969939097643781473667475345, 2.53584883507772709547930076005, 3.95232282678318819744894065046, 4.82287225319105351298819969870, 5.540594919266159990011586678038, 6.596789168201003075254205620316, 7.75909921897572066629394070572, 8.86967126385448069939036979031, 9.79306741519842062585331344406, 10.37164002817329566232453665887, 11.8949691933320435408563664092, 12.68618646293660853366383125796, 13.32875563506017259429805142993, 14.388607666247435796737036797, 14.943562013462852535363158560760, 15.83974391325181791827851495471, 16.61400151132403803703560977325, 17.2421948748517012218385217943, 18.76839876769026639149889230736, 19.787498360871853612217461527540, 20.5031418685953342066298066792, 21.220198700912469092646680867423, 21.88557721411963011603908799255, 22.475898657144228956323201436244, 23.500902648729771971849612447630