L(s) = 1 | + (0.983 − 0.183i)2-s + (−0.900 + 0.433i)3-s + (0.932 − 0.359i)4-s + (0.0287 − 0.999i)5-s + (−0.806 + 0.591i)6-s + (0.993 − 0.114i)7-s + (0.851 − 0.524i)8-s + (0.623 − 0.781i)9-s + (−0.154 − 0.987i)10-s + (0.948 − 0.316i)11-s + (−0.684 + 0.729i)12-s + (−0.733 − 0.680i)13-s + (0.955 − 0.294i)14-s + (0.407 + 0.913i)15-s + (0.740 − 0.671i)16-s + (−0.890 − 0.454i)17-s + ⋯ |
L(s) = 1 | + (0.983 − 0.183i)2-s + (−0.900 + 0.433i)3-s + (0.932 − 0.359i)4-s + (0.0287 − 0.999i)5-s + (−0.806 + 0.591i)6-s + (0.993 − 0.114i)7-s + (0.851 − 0.524i)8-s + (0.623 − 0.781i)9-s + (−0.154 − 0.987i)10-s + (0.948 − 0.316i)11-s + (−0.684 + 0.729i)12-s + (−0.733 − 0.680i)13-s + (0.955 − 0.294i)14-s + (0.407 + 0.913i)15-s + (0.740 − 0.671i)16-s + (−0.890 − 0.454i)17-s + ⋯ |
Λ(s)=(=(547s/2ΓR(s)L(s)(0.357−0.933i)Λ(1−s)
Λ(s)=(=(547s/2ΓR(s)L(s)(0.357−0.933i)Λ(1−s)
Degree: |
1 |
Conductor: |
547
|
Sign: |
0.357−0.933i
|
Analytic conductor: |
2.54025 |
Root analytic conductor: |
2.54025 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ547(142,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 547, (0: ), 0.357−0.933i)
|
Particular Values
L(21) |
≈ |
1.780149756−1.224674108i |
L(21) |
≈ |
1.780149756−1.224674108i |
L(1) |
≈ |
1.557218959−0.4918965523i |
L(1) |
≈ |
1.557218959−0.4918965523i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 547 | 1 |
good | 2 | 1+(0.983−0.183i)T |
| 3 | 1+(−0.900+0.433i)T |
| 5 | 1+(0.0287−0.999i)T |
| 7 | 1+(0.993−0.114i)T |
| 11 | 1+(0.948−0.316i)T |
| 13 | 1+(−0.733−0.680i)T |
| 17 | 1+(−0.890−0.454i)T |
| 19 | 1+(−0.0632+0.997i)T |
| 23 | 1+(−0.857+0.514i)T |
| 29 | 1+(−0.418−0.908i)T |
| 31 | 1+(0.725+0.688i)T |
| 37 | 1+(−0.131−0.991i)T |
| 41 | 1+(−0.5+0.866i)T |
| 43 | 1+(0.00575−0.999i)T |
| 47 | 1+(0.278+0.960i)T |
| 53 | 1+(0.586−0.809i)T |
| 59 | 1+(0.987+0.160i)T |
| 61 | 1+(0.756+0.654i)T |
| 67 | 1+(0.973+0.228i)T |
| 71 | 1+(−0.999+0.0115i)T |
| 73 | 1+(0.407−0.913i)T |
| 79 | 1+(−0.868+0.495i)T |
| 83 | 1+(−0.919−0.391i)T |
| 89 | 1+(0.188+0.982i)T |
| 97 | 1+(−0.519+0.854i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.59000352386419292376094713347, −22.569090839551050597784303250433, −21.94367785684872924952814062541, −21.67946443729112615555569782916, −20.25817748161052477903624126628, −19.398466303450854024474412925315, −18.38264420356014359173798269899, −17.40121081612016633181488593976, −17.021110060040961440213931892057, −15.713304319627249203418509360558, −14.899785521505558531167381426693, −14.21670815428360278355829704153, −13.389764684125583592499290523858, −12.22478408812558963231986921288, −11.55648742515809969733600127704, −11.08321735985789975957679042817, −10.056149305041940536805107796260, −8.37646705710482904161377065674, −7.10626510950317364508527900439, −6.82355330933197850234821462949, −5.84734730564302818878021010077, −4.72881094641713786466563526140, −4.09232140740478391356986502509, −2.42260210500971839684093877402, −1.73796073096948359760531948871,
0.960745541260762992253227779015, 2.0196100809909967345459527703, 3.827775692630937670959692843811, 4.42951575022562416775270988881, 5.30385882515573875775690638908, 5.91662675208409409818196195715, 7.12575621733402151225394712721, 8.26595103806022782936455532762, 9.58388087174091661776624255098, 10.44477744314525747518371402115, 11.60189259746315056449585471313, 11.86282081205253381020084852316, 12.78700514127018085748664267938, 13.81655926792532893913091171399, 14.710281591146616362195049687521, 15.60344368703468111333926633517, 16.38012829219424599545225604099, 17.1992277726460271203380183071, 17.816510023754648192391506948249, 19.34955930684139715752502031079, 20.26309354448776555816785350450, 20.85842994590070358030481729795, 21.64435765361991781332669077003, 22.340219226173055807632688505752, 23.13488965923119037411582595754