L(s) = 1 | + (−0.700 + 0.713i)2-s + (−0.222 + 0.974i)3-s + (−0.0172 − 0.999i)4-s + (0.725 − 0.688i)5-s + (−0.539 − 0.842i)6-s + (−0.994 + 0.103i)7-s + (0.725 + 0.688i)8-s + (−0.900 − 0.433i)9-s + (−0.0172 + 0.999i)10-s + (0.568 + 0.822i)11-s + (0.978 + 0.205i)12-s + (0.623 − 0.781i)13-s + (0.623 − 0.781i)14-s + (0.509 + 0.860i)15-s + (−0.999 + 0.0345i)16-s + (−0.868 + 0.495i)17-s + ⋯ |
L(s) = 1 | + (−0.700 + 0.713i)2-s + (−0.222 + 0.974i)3-s + (−0.0172 − 0.999i)4-s + (0.725 − 0.688i)5-s + (−0.539 − 0.842i)6-s + (−0.994 + 0.103i)7-s + (0.725 + 0.688i)8-s + (−0.900 − 0.433i)9-s + (−0.0172 + 0.999i)10-s + (0.568 + 0.822i)11-s + (0.978 + 0.205i)12-s + (0.623 − 0.781i)13-s + (0.623 − 0.781i)14-s + (0.509 + 0.860i)15-s + (−0.999 + 0.0345i)16-s + (−0.868 + 0.495i)17-s + ⋯ |
Λ(s)=(=(547s/2ΓR(s)L(s)(0.278+0.960i)Λ(1−s)
Λ(s)=(=(547s/2ΓR(s)L(s)(0.278+0.960i)Λ(1−s)
Degree: |
1 |
Conductor: |
547
|
Sign: |
0.278+0.960i
|
Analytic conductor: |
2.54025 |
Root analytic conductor: |
2.54025 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ547(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 547, (0: ), 0.278+0.960i)
|
Particular Values
L(21) |
≈ |
0.7019757379+0.5272079803i |
L(21) |
≈ |
0.7019757379+0.5272079803i |
L(1) |
≈ |
0.6736621583+0.3381314652i |
L(1) |
≈ |
0.6736621583+0.3381314652i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 547 | 1 |
good | 2 | 1+(−0.700+0.713i)T |
| 3 | 1+(−0.222+0.974i)T |
| 5 | 1+(0.725−0.688i)T |
| 7 | 1+(−0.994+0.103i)T |
| 11 | 1+(0.568+0.822i)T |
| 13 | 1+(0.623−0.781i)T |
| 17 | 1+(−0.868+0.495i)T |
| 19 | 1+(0.915−0.402i)T |
| 23 | 1+(−0.985+0.171i)T |
| 29 | 1+(0.386−0.922i)T |
| 31 | 1+(0.256+0.966i)T |
| 37 | 1+(0.962−0.272i)T |
| 41 | 1+T |
| 43 | 1+(0.449+0.893i)T |
| 47 | 1+(−0.748+0.663i)T |
| 53 | 1+(0.509+0.860i)T |
| 59 | 1+(0.885−0.464i)T |
| 61 | 1+(0.322−0.946i)T |
| 67 | 1+(0.978+0.205i)T |
| 71 | 1+(−0.596−0.802i)T |
| 73 | 1+(0.509−0.860i)T |
| 79 | 1+(0.449+0.893i)T |
| 83 | 1+(−0.354+0.935i)T |
| 89 | 1+(0.322+0.946i)T |
| 97 | 1+(−0.289−0.957i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.89188494567923692228229059658, −22.28805600025558250943804243070, −21.6949558820338203640421758694, −20.43928120121488395160188604535, −19.64474512632117904647524571737, −18.88027009469380173564030217073, −18.33947307740340424346250075332, −17.66240195391616301081952971927, −16.601732827604696248536866119798, −16.107783353330190822036072449971, −14.23108039638466120317679824179, −13.592090760550101061227542472512, −12.98518431169112699437147563133, −11.76551844057554605553619197120, −11.291274775335205291013584395537, −10.22122589803127631727479498977, −9.32776350598736998370195095052, −8.52739011718004524818097491717, −7.2467583210423090364414299438, −6.58698572717971182650876294438, −5.83587823429014021356098669128, −3.87586075694014182064499382169, −2.89058939687264595642368260152, −2.02890225666614924587763768570, −0.84619250662094945073179731297,
0.90885515384905693378636027847, 2.46235941222309513305170743480, 4.02243451264724335053683269564, 4.98873200448438133072654714301, 5.99577988831319018433183761213, 6.461740010443175665778210754390, 7.992987974163483888870978843768, 9.006515033217653736354900874238, 9.60135250245680932894982413041, 10.12040877539075568945091955488, 11.17149100536865367020307991388, 12.448209636347941786076765192818, 13.49677866248112583869861761992, 14.4097759244327406596419030235, 15.56729519789304502798164580334, 15.89934489612389682201742508600, 16.731461074065722732559033687158, 17.698418563098445252162763743, 17.92469163682739886458126923438, 19.72754760624619112088565748072, 19.927539129408367309651912279275, 20.94644245810657245427828642094, 22.1019361644971251041951058949, 22.664989718545977705470312088602, 23.52611922371065120428476468794