Properties

Label 1-5e2-25.22-r1-0-0
Degree 11
Conductor 2525
Sign 0.2480.968i0.248 - 0.968i
Analytic cond. 2.686622.68662
Root an. cond. 2.686622.68662
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.587 − 0.809i)2-s + (0.951 − 0.309i)3-s + (−0.309 − 0.951i)4-s + (0.309 − 0.951i)6-s + i·7-s + (−0.951 − 0.309i)8-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (−0.587 − 0.809i)12-s + (0.587 + 0.809i)13-s + (0.809 + 0.587i)14-s + (−0.809 + 0.587i)16-s + (0.951 + 0.309i)17-s i·18-s + (−0.309 + 0.951i)19-s + ⋯
L(s)  = 1  + (0.587 − 0.809i)2-s + (0.951 − 0.309i)3-s + (−0.309 − 0.951i)4-s + (0.309 − 0.951i)6-s + i·7-s + (−0.951 − 0.309i)8-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (−0.587 − 0.809i)12-s + (0.587 + 0.809i)13-s + (0.809 + 0.587i)14-s + (−0.809 + 0.587i)16-s + (0.951 + 0.309i)17-s i·18-s + (−0.309 + 0.951i)19-s + ⋯

Functional equation

Λ(s)=(25s/2ΓR(s+1)L(s)=((0.2480.968i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(25s/2ΓR(s+1)L(s)=((0.2480.968i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 2525    =    525^{2}
Sign: 0.2480.968i0.248 - 0.968i
Analytic conductor: 2.686622.68662
Root analytic conductor: 2.686622.68662
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ25(22,)\chi_{25} (22, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 25, (1: ), 0.2480.968i)(1,\ 25,\ (1:\ ),\ 0.248 - 0.968i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6988925211.317796120i1.698892521 - 1.317796120i
L(12)L(\frac12) \approx 1.6988925211.317796120i1.698892521 - 1.317796120i
L(1)L(1) \approx 1.5029352900.8146263744i1.502935290 - 0.8146263744i
L(1)L(1) \approx 1.5029352900.8146263744i1.502935290 - 0.8146263744i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
good2 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
3 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
7 1+iT 1 + iT
11 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
13 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
17 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
19 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
23 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
29 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
31 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
37 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
41 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
43 1iT 1 - iT
47 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
53 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
59 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
61 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
67 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
71 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
73 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
79 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
83 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
89 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
97 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−38.59889367890269848499165209757, −36.74735205333305172005801626122, −35.975598991709876343890990784535, −34.27586574913220758342749273218, −32.97860683977653684130801577331, −32.24413557918853681821285672084, −30.8805355043744549490832883920, −29.98311919115548044573858749999, −27.560065896921924650537764698394, −26.23558771727709495506183551581, −25.53432201050028880350409263436, −24.01802416462035286251035286780, −22.80133874512205780707630217717, −21.14235793288864123145726798648, −20.15907046005617239439438131795, −18.092878207712702470918655031591, −16.396276979937542350697677652775, −15.203437904668665289310507087237, −13.927268770752639087339477676644, −12.86075528096509909418139352687, −10.281685234816200883568263210570, −8.36320321565733722042263037584, −7.162107251158793135539960620329, −4.82460368351358800972059216098, −3.233418702909588958935034996908, 2.00962811207997792106880625555, 3.60948880523282830801389596731, 5.85314952260678614135089002329, 8.35729297605591647017677515242, 9.83699969076060357130631425927, 11.787506531645565541452875646307, 13.1257342764403463460291410638, 14.34576141050023920624390795965, 15.64843473466794840508725022084, 18.53767676286194792550544945503, 19.10775540941618199150071974083, 20.829278426493166479653774278, 21.53611502144450401795286496697, 23.4153931595628825998142240338, 24.604934083227172991538570894799, 26.05638480343179985683091206165, 27.72683394011576383827045427617, 29.076146298482492391157443057720, 30.32285426605063366456286951633, 31.523862125357787500857504281564, 32.02657057510138798061776627674, 33.78789509266728952939908101014, 35.66072480695777225366142233666, 36.95296793427771887093297939565, 37.83914813124235530266748124924

Graph of the ZZ-function along the critical line