L(s) = 1 | + (0.587 − 0.809i)2-s + (0.951 − 0.309i)3-s + (−0.309 − 0.951i)4-s + (0.309 − 0.951i)6-s + i·7-s + (−0.951 − 0.309i)8-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (−0.587 − 0.809i)12-s + (0.587 + 0.809i)13-s + (0.809 + 0.587i)14-s + (−0.809 + 0.587i)16-s + (0.951 + 0.309i)17-s − i·18-s + (−0.309 + 0.951i)19-s + ⋯ |
L(s) = 1 | + (0.587 − 0.809i)2-s + (0.951 − 0.309i)3-s + (−0.309 − 0.951i)4-s + (0.309 − 0.951i)6-s + i·7-s + (−0.951 − 0.309i)8-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (−0.587 − 0.809i)12-s + (0.587 + 0.809i)13-s + (0.809 + 0.587i)14-s + (−0.809 + 0.587i)16-s + (0.951 + 0.309i)17-s − i·18-s + (−0.309 + 0.951i)19-s + ⋯ |
Λ(s)=(=(25s/2ΓR(s+1)L(s)(0.248−0.968i)Λ(1−s)
Λ(s)=(=(25s/2ΓR(s+1)L(s)(0.248−0.968i)Λ(1−s)
Degree: |
1 |
Conductor: |
25
= 52
|
Sign: |
0.248−0.968i
|
Analytic conductor: |
2.68662 |
Root analytic conductor: |
2.68662 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ25(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 25, (1: ), 0.248−0.968i)
|
Particular Values
L(21) |
≈ |
1.698892521−1.317796120i |
L(21) |
≈ |
1.698892521−1.317796120i |
L(1) |
≈ |
1.502935290−0.8146263744i |
L(1) |
≈ |
1.502935290−0.8146263744i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
good | 2 | 1+(0.587−0.809i)T |
| 3 | 1+(0.951−0.309i)T |
| 7 | 1+iT |
| 11 | 1+(−0.809−0.587i)T |
| 13 | 1+(0.587+0.809i)T |
| 17 | 1+(0.951+0.309i)T |
| 19 | 1+(−0.309+0.951i)T |
| 23 | 1+(−0.587+0.809i)T |
| 29 | 1+(−0.309−0.951i)T |
| 31 | 1+(0.309−0.951i)T |
| 37 | 1+(−0.587−0.809i)T |
| 41 | 1+(−0.809+0.587i)T |
| 43 | 1−iT |
| 47 | 1+(−0.951+0.309i)T |
| 53 | 1+(0.951−0.309i)T |
| 59 | 1+(0.809−0.587i)T |
| 61 | 1+(−0.809−0.587i)T |
| 67 | 1+(0.951+0.309i)T |
| 71 | 1+(0.309+0.951i)T |
| 73 | 1+(−0.587+0.809i)T |
| 79 | 1+(−0.309−0.951i)T |
| 83 | 1+(−0.951−0.309i)T |
| 89 | 1+(0.809+0.587i)T |
| 97 | 1+(−0.951+0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−38.59889367890269848499165209757, −36.74735205333305172005801626122, −35.975598991709876343890990784535, −34.27586574913220758342749273218, −32.97860683977653684130801577331, −32.24413557918853681821285672084, −30.8805355043744549490832883920, −29.98311919115548044573858749999, −27.560065896921924650537764698394, −26.23558771727709495506183551581, −25.53432201050028880350409263436, −24.01802416462035286251035286780, −22.80133874512205780707630217717, −21.14235793288864123145726798648, −20.15907046005617239439438131795, −18.092878207712702470918655031591, −16.396276979937542350697677652775, −15.203437904668665289310507087237, −13.927268770752639087339477676644, −12.86075528096509909418139352687, −10.281685234816200883568263210570, −8.36320321565733722042263037584, −7.162107251158793135539960620329, −4.82460368351358800972059216098, −3.233418702909588958935034996908,
2.00962811207997792106880625555, 3.60948880523282830801389596731, 5.85314952260678614135089002329, 8.35729297605591647017677515242, 9.83699969076060357130631425927, 11.787506531645565541452875646307, 13.1257342764403463460291410638, 14.34576141050023920624390795965, 15.64843473466794840508725022084, 18.53767676286194792550544945503, 19.10775540941618199150071974083, 20.829278426493166479653774278, 21.53611502144450401795286496697, 23.4153931595628825998142240338, 24.604934083227172991538570894799, 26.05638480343179985683091206165, 27.72683394011576383827045427617, 29.076146298482492391157443057720, 30.32285426605063366456286951633, 31.523862125357787500857504281564, 32.02657057510138798061776627674, 33.78789509266728952939908101014, 35.66072480695777225366142233666, 36.95296793427771887093297939565, 37.83914813124235530266748124924