L(s) = 1 | + 7-s + (−0.809 − 0.587i)11-s + (0.809 − 0.587i)13-s + (−0.309 + 0.951i)17-s + (−0.309 + 0.951i)19-s + (0.809 + 0.587i)23-s + (0.309 + 0.951i)29-s + (0.309 − 0.951i)31-s + (0.809 − 0.587i)37-s + (0.809 − 0.587i)41-s − 43-s + (−0.309 − 0.951i)47-s + 49-s + (0.309 + 0.951i)53-s + (−0.809 + 0.587i)59-s + ⋯ |
L(s) = 1 | + 7-s + (−0.809 − 0.587i)11-s + (0.809 − 0.587i)13-s + (−0.309 + 0.951i)17-s + (−0.309 + 0.951i)19-s + (0.809 + 0.587i)23-s + (0.309 + 0.951i)29-s + (0.309 − 0.951i)31-s + (0.809 − 0.587i)37-s + (0.809 − 0.587i)41-s − 43-s + (−0.309 − 0.951i)47-s + 49-s + (0.309 + 0.951i)53-s + (−0.809 + 0.587i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.311488893 + 0.2920089552i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.311488893 + 0.2920089552i\) |
\(L(1)\) |
\(\approx\) |
\(1.246202717 + 0.03135498902i\) |
\(L(1)\) |
\(\approx\) |
\(1.246202717 + 0.03135498902i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.809 - 0.587i)T \) |
| 17 | \( 1 + (-0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (0.309 + 0.951i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.809 - 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (-0.809 + 0.587i)T \) |
| 61 | \( 1 + (0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.309 + 0.951i)T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.12445072243130229432718531978, −21.921649822965266879922002394958, −21.0244233292537211056510169975, −20.64387947162888014701986084193, −19.58863421996780515534148075125, −18.50443322720245366890425208371, −17.971973937875994283824282359, −17.15554267838246911601351819915, −16.05760835429374986782508286264, −15.35143762972062303187836938203, −14.45579335268780724537073906485, −13.57589919335784362825626057694, −12.80782116418216629838145913925, −11.553357274095288540686358223307, −11.11404719074661478211902398317, −10.03893587940867505655617538227, −8.970478407045486556483308482841, −8.17916177938927047654365257344, −7.21792871109543317884583020802, −6.29638208419995203961755346178, −4.87674586731806609281405734644, −4.57085411355962944357615623471, −2.96564672200737315212700744256, −1.99771168641259606647177275030, −0.74075941529510455489706418966,
0.89080902455110939586206672312, 1.976166733786587916786044967055, 3.24366661926439049673327862792, 4.26942563872808397572890046966, 5.41934068634842723932949559644, 6.07097757551850453257749924363, 7.49291554055965915692778724728, 8.22089875601088773342274095289, 8.90733187981480465296147588749, 10.40571135341014613109261545770, 10.83652228313226024282749653685, 11.779631510224743600786385871341, 12.92397321709329618610904706754, 13.54122591466979386227700343905, 14.65565987390041093711287415480, 15.263883723370916764649554524922, 16.259273598599436442012064611121, 17.14247341255757419608545494975, 18.03712074354945242109392152708, 18.62146825040061621869037344486, 19.63103035400705235825335893735, 20.65736761810775228744226332565, 21.18650506534670911871565665100, 21.92947631671537025847848144886, 23.203750342044189285779427903096