L(s) = 1 | − 7-s + (0.309 − 0.951i)11-s + (0.309 + 0.951i)13-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (0.309 − 0.951i)23-s + (−0.809 − 0.587i)29-s + (−0.809 + 0.587i)31-s + (0.309 + 0.951i)37-s + (−0.309 − 0.951i)41-s + 43-s + (−0.809 − 0.587i)47-s + 49-s + (0.809 + 0.587i)53-s + (0.309 + 0.951i)59-s + ⋯ |
L(s) = 1 | − 7-s + (0.309 − 0.951i)11-s + (0.309 + 0.951i)13-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (0.309 − 0.951i)23-s + (−0.809 − 0.587i)29-s + (−0.809 + 0.587i)31-s + (0.309 + 0.951i)37-s + (−0.309 − 0.951i)41-s + 43-s + (−0.809 − 0.587i)47-s + 49-s + (0.809 + 0.587i)53-s + (0.309 + 0.951i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8988814460 + 0.7436194031i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8988814460 + 0.7436194031i\) |
\(L(1)\) |
\(\approx\) |
\(0.9093970826 + 0.05683576846i\) |
\(L(1)\) |
\(\approx\) |
\(0.9093970826 + 0.05683576846i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (-0.309 - 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 + (-0.809 + 0.587i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.60407241811647542458714356480, −22.21682349935040914950647609079, −20.93373985120963661394770590911, −20.08305236193486671949481895657, −19.64861836626965919890414575537, −18.41177909504008474449733744015, −17.85975733697856865492733309743, −16.821124099704799216418590690, −15.95015586336943420007139660357, −15.29167070806966800774420160133, −14.32962464175026939333845838160, −13.17357932769265758021574907730, −12.754905582430562279399537499048, −11.66763916041816874386107913579, −10.72231830455610858770724775157, −9.61735798742025926342145173407, −9.2438697343783376627356846437, −7.78531678752981253863276222179, −7.07883794719166540131349714730, −6.03639195281054110077905229311, −5.123911316347583086767025682523, −3.85220380830382906879554928587, −3.03211984401910595502940408776, −1.756843940086482404764583163300, −0.339464288016158806987191232925,
0.92939711108195340673301791072, 2.36420327340981634785802737907, 3.44679769717104732965042241790, 4.29584624399532258325508279560, 5.66383980286999120590855493110, 6.48149005038813714321586149835, 7.23090723175452967043233495265, 8.7142549873578027539071357524, 9.10281702833528336709885747186, 10.26270839144008492654252605987, 11.17330552307074440732068886918, 11.98087642885147899803376694490, 13.12247133753120035031678224335, 13.62764304034151545023025778644, 14.658253749818919556398541246737, 15.698689345151019085809740854836, 16.404407081771974274121013289183, 17.04436060243191888842560093584, 18.26227827636952951981396688624, 19.00036186892139408763447209360, 19.65358529634131501082857087078, 20.54009332175664242072424464912, 21.62741885437870506832371100949, 22.17938731548560151276671909805, 22.96968334532321376527709620542