L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s + 14-s + 15-s + 16-s − 17-s − 18-s + 19-s + 20-s − 21-s + 22-s − 23-s − 24-s + 25-s − 26-s + 27-s − 28-s + ⋯ |
L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s + 14-s + 15-s + 16-s − 17-s − 18-s + 19-s + 20-s − 21-s + 22-s − 23-s − 24-s + 25-s − 26-s + 27-s − 28-s + ⋯ |
Λ(s)=(=(61s/2ΓR(s)L(s)Λ(1−s)
Λ(s)=(=(61s/2ΓR(s)L(s)Λ(1−s)
Degree: |
1 |
Conductor: |
61
|
Sign: |
1
|
Analytic conductor: |
0.283282 |
Root analytic conductor: |
0.283282 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ61(60,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(1, 61, (0: ), 1)
|
Particular Values
L(21) |
≈ |
0.8484402525 |
L(21) |
≈ |
0.8484402525 |
L(1) |
≈ |
0.9383101982 |
L(1) |
≈ |
0.9383101982 |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 61 | 1 |
good | 2 | 1−T |
| 3 | 1+T |
| 5 | 1+T |
| 7 | 1−T |
| 11 | 1−T |
| 13 | 1+T |
| 17 | 1−T |
| 19 | 1+T |
| 23 | 1−T |
| 29 | 1−T |
| 31 | 1−T |
| 37 | 1−T |
| 41 | 1+T |
| 43 | 1−T |
| 47 | 1+T |
| 53 | 1−T |
| 59 | 1−T |
| 67 | 1−T |
| 71 | 1−T |
| 73 | 1+T |
| 79 | 1−T |
| 83 | 1+T |
| 89 | 1−T |
| 97 | 1+T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−32.82573411853098146644267018675, −31.40500258932120590373403663653, −30.07959899261099683320680980451, −29.098555856325775051405658006562, −28.223749692000577024700664824476, −26.44569956073799372286794402195, −26.05503235862351310609443033328, −25.17795901381565984513361748684, −24.07370651255462611318217007938, −22.03419632198522342627092944428, −20.78392187781689933742302267641, −20.057441138757320313363140006188, −18.672598721958749196534732624781, −18.00576347603514123546512991036, −16.29315012627397787134601995636, −15.489382874162138740862518318787, −13.789131049820828862752138411306, −12.8133754336178107707525794242, −10.669447748894294158852750249409, −9.64611657141885916446348243181, −8.79080826384926706085041087801, −7.32744087186156568040361758365, −5.970300793360114507675288812948, −3.22773639167905402892302632100, −1.944591235003101921300981709370,
1.944591235003101921300981709370, 3.22773639167905402892302632100, 5.970300793360114507675288812948, 7.32744087186156568040361758365, 8.79080826384926706085041087801, 9.64611657141885916446348243181, 10.669447748894294158852750249409, 12.8133754336178107707525794242, 13.789131049820828862752138411306, 15.489382874162138740862518318787, 16.29315012627397787134601995636, 18.00576347603514123546512991036, 18.672598721958749196534732624781, 20.057441138757320313363140006188, 20.78392187781689933742302267641, 22.03419632198522342627092944428, 24.07370651255462611318217007938, 25.17795901381565984513361748684, 26.05503235862351310609443033328, 26.44569956073799372286794402195, 28.223749692000577024700664824476, 29.098555856325775051405658006562, 30.07959899261099683320680980451, 31.40500258932120590373403663653, 32.82573411853098146644267018675