Properties

Label 1-61-61.60-r0-0-0
Degree $1$
Conductor $61$
Sign $1$
Analytic cond. $0.283282$
Root an. cond. $0.283282$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s + 14-s + 15-s + 16-s − 17-s − 18-s + 19-s + 20-s − 21-s + 22-s − 23-s − 24-s + 25-s − 26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s + 14-s + 15-s + 16-s − 17-s − 18-s + 19-s + 20-s − 21-s + 22-s − 23-s − 24-s + 25-s − 26-s + 27-s − 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 61 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 61 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(61\)
Sign: $1$
Analytic conductor: \(0.283282\)
Root analytic conductor: \(0.283282\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{61} (60, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 61,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8484402525\)
\(L(\frac12)\) \(\approx\) \(0.8484402525\)
\(L(1)\) \(\approx\) \(0.9383101982\)
\(L(1)\) \(\approx\) \(0.9383101982\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad61 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 - T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−32.82573411853098146644267018675, −31.40500258932120590373403663653, −30.07959899261099683320680980451, −29.098555856325775051405658006562, −28.223749692000577024700664824476, −26.44569956073799372286794402195, −26.05503235862351310609443033328, −25.17795901381565984513361748684, −24.07370651255462611318217007938, −22.03419632198522342627092944428, −20.78392187781689933742302267641, −20.057441138757320313363140006188, −18.672598721958749196534732624781, −18.00576347603514123546512991036, −16.29315012627397787134601995636, −15.489382874162138740862518318787, −13.789131049820828862752138411306, −12.8133754336178107707525794242, −10.669447748894294158852750249409, −9.64611657141885916446348243181, −8.79080826384926706085041087801, −7.32744087186156568040361758365, −5.970300793360114507675288812948, −3.22773639167905402892302632100, −1.944591235003101921300981709370, 1.944591235003101921300981709370, 3.22773639167905402892302632100, 5.970300793360114507675288812948, 7.32744087186156568040361758365, 8.79080826384926706085041087801, 9.64611657141885916446348243181, 10.669447748894294158852750249409, 12.8133754336178107707525794242, 13.789131049820828862752138411306, 15.489382874162138740862518318787, 16.29315012627397787134601995636, 18.00576347603514123546512991036, 18.672598721958749196534732624781, 20.057441138757320313363140006188, 20.78392187781689933742302267641, 22.03419632198522342627092944428, 24.07370651255462611318217007938, 25.17795901381565984513361748684, 26.05503235862351310609443033328, 26.44569956073799372286794402195, 28.223749692000577024700664824476, 29.098555856325775051405658006562, 30.07959899261099683320680980451, 31.40500258932120590373403663653, 32.82573411853098146644267018675

Graph of the $Z$-function along the critical line