L(s) = 1 | + (0.675 − 0.737i)2-s + (−0.953 + 0.302i)3-s + (−0.0868 − 0.996i)4-s + (−0.421 + 0.906i)6-s + (0.694 + 0.719i)7-s + (−0.793 − 0.609i)8-s + (0.817 − 0.576i)9-s + (−0.592 + 0.805i)11-s + (0.383 + 0.923i)12-s + (−0.117 + 0.993i)13-s + (0.999 − 0.0255i)14-s + (−0.984 + 0.173i)16-s + (0.994 − 0.102i)17-s + (0.127 − 0.991i)18-s + (0.369 − 0.929i)19-s + ⋯ |
L(s) = 1 | + (0.675 − 0.737i)2-s + (−0.953 + 0.302i)3-s + (−0.0868 − 0.996i)4-s + (−0.421 + 0.906i)6-s + (0.694 + 0.719i)7-s + (−0.793 − 0.609i)8-s + (0.817 − 0.576i)9-s + (−0.592 + 0.805i)11-s + (0.383 + 0.923i)12-s + (−0.117 + 0.993i)13-s + (0.999 − 0.0255i)14-s + (−0.984 + 0.173i)16-s + (0.994 − 0.102i)17-s + (0.127 − 0.991i)18-s + (0.369 − 0.929i)19-s + ⋯ |
Λ(s)=(=(6145s/2ΓR(s)L(s)(0.563+0.825i)Λ(1−s)
Λ(s)=(=(6145s/2ΓR(s)L(s)(0.563+0.825i)Λ(1−s)
Degree: |
1 |
Conductor: |
6145
= 5⋅1229
|
Sign: |
0.563+0.825i
|
Analytic conductor: |
28.5372 |
Root analytic conductor: |
28.5372 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6145(1007,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 6145, (0: ), 0.563+0.825i)
|
Particular Values
L(21) |
≈ |
1.257823612+0.6643465070i |
L(21) |
≈ |
1.257823612+0.6643465070i |
L(1) |
≈ |
1.084070606−0.1626697351i |
L(1) |
≈ |
1.084070606−0.1626697351i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 1229 | 1 |
good | 2 | 1+(0.675−0.737i)T |
| 3 | 1+(−0.953+0.302i)T |
| 7 | 1+(0.694+0.719i)T |
| 11 | 1+(−0.592+0.805i)T |
| 13 | 1+(−0.117+0.993i)T |
| 17 | 1+(0.994−0.102i)T |
| 19 | 1+(0.369−0.929i)T |
| 23 | 1+(−0.956−0.292i)T |
| 29 | 1+(0.567+0.823i)T |
| 31 | 1+(0.999+0.0409i)T |
| 37 | 1+(−0.946−0.321i)T |
| 41 | 1+(0.364+0.931i)T |
| 43 | 1+(0.744+0.668i)T |
| 47 | 1+(−0.998+0.0562i)T |
| 53 | 1+(−0.927−0.374i)T |
| 59 | 1+(0.983+0.183i)T |
| 61 | 1+(0.448+0.893i)T |
| 67 | 1+(−0.985−0.168i)T |
| 71 | 1+(−0.0919−0.995i)T |
| 73 | 1+(0.957−0.287i)T |
| 79 | 1+(−0.793+0.609i)T |
| 83 | 1+(0.981+0.193i)T |
| 89 | 1+(−0.0766−0.997i)T |
| 97 | 1+(0.435−0.900i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−17.43396523085177131279777555757, −16.99880783890510105128233950294, −16.01707817129238113219078651955, −15.9663910537819438981202134079, −14.99219717569015940722306539898, −14.05835538502103457154010523998, −13.817689066875419438706860596078, −13.04780399996632585326489014006, −12.290220663796544477998051679221, −11.87799890266031408987010009066, −11.115152194506670028358428677040, −10.35191682160008202888248856193, −9.907386800545748363479245473, −8.40881317434702711520400657648, −7.88933816230474577254443897895, −7.63104531681381486549009741384, −6.67333089409524473459762045971, −5.91328398269242628799285499137, −5.46243841259996301720329874009, −4.9195331052434017541044958160, −4.00377427596107968202207715943, −3.41221022496034867818085243707, −2.37623514719712399811761282851, −1.27402169158581324222460512670, −0.35934546317284591974314875020,
1.02323730364113882259367644448, 1.748918711232539959487903865039, 2.51956354224896341884169074917, 3.37024612279674533626046301569, 4.48915145396029118513817623647, 4.71795586120714863934764165808, 5.34716504581673830133871271728, 6.09240645639103614018892896904, 6.75892204461836178583127976138, 7.58960444395279222195762890801, 8.63577067326540441722755280260, 9.52349525461983492302957783322, 9.92452968112043653706841862657, 10.68561410400574837972239047810, 11.33601301641933544407813227557, 11.93522321536349502129551423567, 12.26215583329767049683084866600, 12.94085917504255484349064207962, 13.85538006216048229436076909976, 14.54355693164025516940010414955, 15.02166204594235580919591203551, 15.9729639185794486755054390050, 16.08910210778280027548843144217, 17.305424325432469632027848273857, 18.08049012151832151859892227751