L(s) = 1 | + (−0.302 + 0.953i)2-s + (0.233 + 0.972i)3-s + (−0.817 − 0.576i)4-s + (−0.997 − 0.0715i)6-s + (0.555 + 0.831i)7-s + (0.796 − 0.605i)8-s + (−0.891 + 0.453i)9-s + (0.641 − 0.767i)11-s + (0.369 − 0.929i)12-s + (0.272 + 0.962i)13-s + (−0.960 + 0.277i)14-s + (0.336 + 0.941i)16-s + (−0.902 − 0.430i)17-s + (−0.163 − 0.986i)18-s + (−0.853 + 0.520i)19-s + ⋯ |
L(s) = 1 | + (−0.302 + 0.953i)2-s + (0.233 + 0.972i)3-s + (−0.817 − 0.576i)4-s + (−0.997 − 0.0715i)6-s + (0.555 + 0.831i)7-s + (0.796 − 0.605i)8-s + (−0.891 + 0.453i)9-s + (0.641 − 0.767i)11-s + (0.369 − 0.929i)12-s + (0.272 + 0.962i)13-s + (−0.960 + 0.277i)14-s + (0.336 + 0.941i)16-s + (−0.902 − 0.430i)17-s + (−0.163 − 0.986i)18-s + (−0.853 + 0.520i)19-s + ⋯ |
Λ(s)=(=(6145s/2ΓR(s+1)L(s)(0.974−0.225i)Λ(1−s)
Λ(s)=(=(6145s/2ΓR(s+1)L(s)(0.974−0.225i)Λ(1−s)
Degree: |
1 |
Conductor: |
6145
= 5⋅1229
|
Sign: |
0.974−0.225i
|
Analytic conductor: |
660.371 |
Root analytic conductor: |
660.371 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6145(1029,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 6145, (1: ), 0.974−0.225i)
|
Particular Values
L(21) |
≈ |
−0.07685547855+0.008759032058i |
L(21) |
≈ |
−0.07685547855+0.008759032058i |
L(1) |
≈ |
0.5303466082+0.6805377874i |
L(1) |
≈ |
0.5303466082+0.6805377874i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 1229 | 1 |
good | 2 | 1+(−0.302+0.953i)T |
| 3 | 1+(0.233+0.972i)T |
| 7 | 1+(0.555+0.831i)T |
| 11 | 1+(0.641−0.767i)T |
| 13 | 1+(0.272+0.962i)T |
| 17 | 1+(−0.902−0.430i)T |
| 19 | 1+(−0.853+0.520i)T |
| 23 | 1+(−0.122+0.992i)T |
| 29 | 1+(0.350+0.936i)T |
| 31 | 1+(0.900+0.435i)T |
| 37 | 1+(0.444−0.895i)T |
| 41 | 1+(0.823+0.567i)T |
| 43 | 1+(−0.981−0.193i)T |
| 47 | 1+(0.580+0.814i)T |
| 53 | 1+(−0.881+0.471i)T |
| 59 | 1+(0.439−0.898i)T |
| 61 | 1+(0.917−0.397i)T |
| 67 | 1+(−0.959−0.282i)T |
| 71 | 1+(0.848+0.529i)T |
| 73 | 1+(−0.0664−0.997i)T |
| 79 | 1+(0.605−0.796i)T |
| 83 | 1+(−0.843−0.537i)T |
| 89 | 1+(−0.747−0.664i)T |
| 97 | 1+(0.238−0.971i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−17.24949881706744868410129868651, −16.690576070872542612034132232349, −15.304670289560582183044250814311, −14.79796313169997953006693389149, −13.99667446042758103167116648100, −13.383636935368486122378827065369, −12.96160223317656453497818058896, −12.28949457108366389032258196354, −11.59311640415623004184288365559, −11.02763682134180214821261015681, −10.3280401516504909545757121442, −9.704915139435293415171896508700, −8.64008672220877947723315912234, −8.34891068738985783394579902167, −7.685099372102384846545731819661, −6.84676966414148843286404221789, −6.308017954770030542802233212701, −5.11593144126441569384783349225, −4.270062608186546601287898161298, −3.8759787248491851536527323377, −2.64349321619318647163068451361, −2.29145298654094932124638911302, −1.35377084090596449709773621936, −0.77478358291687371495121971670, −0.01352558836470393194990753126,
1.28921048472071760892649737740, 2.11744194923966656640331605128, 3.19488088662040300730403613634, 4.064132783829177994885763149816, 4.607907118038374971129785361167, 5.270817442394909689302168027552, 6.10450140913252243884135054923, 6.473920506993552106218906968, 7.580197569941270955507653152646, 8.37207974007129023940436049059, 8.84027479633183624552740861958, 9.2292105834370966201000860555, 9.92987806781647303855274966926, 10.96647874757450675518586943561, 11.243119684992227327691136686, 12.13398009697003623670379131712, 13.17398898448520776737000981326, 14.04105829121236718467325252512, 14.30113942950993788399075806840, 14.924159491760409581619230181764, 15.76040769260651825107245752772, 15.97543764795583231578033061908, 16.720330096334236576558116357874, 17.35529111184070555388321659516, 17.940149426645376881753656352856