L(s) = 1 | + (−0.963 + 0.267i)2-s + (−0.987 + 0.157i)3-s + (0.856 − 0.516i)4-s + (0.909 − 0.416i)6-s + (0.379 − 0.925i)7-s + (−0.686 + 0.726i)8-s + (0.950 − 0.311i)9-s + (−0.511 + 0.859i)11-s + (−0.764 + 0.644i)12-s + (−0.996 − 0.0868i)13-s + (−0.117 + 0.993i)14-s + (0.467 − 0.884i)16-s + (0.453 − 0.891i)17-s + (−0.831 + 0.555i)18-s + (−0.989 − 0.142i)19-s + ⋯ |
L(s) = 1 | + (−0.963 + 0.267i)2-s + (−0.987 + 0.157i)3-s + (0.856 − 0.516i)4-s + (0.909 − 0.416i)6-s + (0.379 − 0.925i)7-s + (−0.686 + 0.726i)8-s + (0.950 − 0.311i)9-s + (−0.511 + 0.859i)11-s + (−0.764 + 0.644i)12-s + (−0.996 − 0.0868i)13-s + (−0.117 + 0.993i)14-s + (0.467 − 0.884i)16-s + (0.453 − 0.891i)17-s + (−0.831 + 0.555i)18-s + (−0.989 − 0.142i)19-s + ⋯ |
Λ(s)=(=(6145s/2ΓR(s+1)L(s)(−0.305+0.952i)Λ(1−s)
Λ(s)=(=(6145s/2ΓR(s+1)L(s)(−0.305+0.952i)Λ(1−s)
Degree: |
1 |
Conductor: |
6145
= 5⋅1229
|
Sign: |
−0.305+0.952i
|
Analytic conductor: |
660.371 |
Root analytic conductor: |
660.371 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6145(1033,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 6145, (1: ), −0.305+0.952i)
|
Particular Values
L(21) |
≈ |
0.05177466333+0.07098044870i |
L(21) |
≈ |
0.05177466333+0.07098044870i |
L(1) |
≈ |
0.4463896999+0.01340922684i |
L(1) |
≈ |
0.4463896999+0.01340922684i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 1229 | 1 |
good | 2 | 1+(−0.963+0.267i)T |
| 3 | 1+(−0.987+0.157i)T |
| 7 | 1+(0.379−0.925i)T |
| 11 | 1+(−0.511+0.859i)T |
| 13 | 1+(−0.996−0.0868i)T |
| 17 | 1+(0.453−0.891i)T |
| 19 | 1+(−0.989−0.142i)T |
| 23 | 1+(0.671+0.740i)T |
| 29 | 1+(0.546−0.837i)T |
| 31 | 1+(−0.904−0.425i)T |
| 37 | 1+(−0.369+0.929i)T |
| 41 | 1+(−0.886+0.462i)T |
| 43 | 1+(0.919+0.393i)T |
| 47 | 1+(0.542−0.840i)T |
| 53 | 1+(−0.193−0.981i)T |
| 59 | 1+(−0.917−0.397i)T |
| 61 | 1+(−0.774+0.633i)T |
| 67 | 1+(−0.989+0.147i)T |
| 71 | 1+(0.979−0.203i)T |
| 73 | 1+(0.388−0.921i)T |
| 79 | 1+(−0.726+0.686i)T |
| 83 | 1+(0.262+0.964i)T |
| 89 | 1+(0.345−0.938i)T |
| 97 | 1+(0.991+0.127i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−17.19453974960815696214180367154, −16.97246319585756796364816887359, −16.18976179657464131641781952730, −15.59898550239324825622342259228, −14.92963551886749348790414808098, −14.169487142631149333467943314048, −12.85283982900675870746961555593, −12.47569783093216274503519409677, −12.112827676019781839275975198726, −11.17569325179030798186321291441, −10.60294827830390668386373860072, −10.406655609782625152664101964358, −9.17568257818706461847010857731, −8.80184081165521580867439652156, −7.94470227922887832354801577554, −7.37239007809924083831724097730, −6.51988489419773880908675396481, −5.91142095815934033092605754280, −5.28582153988062167233460143028, −4.4395896610651968879669897284, −3.366471958025168920465835411195, −2.48717602937492452835565507690, −1.84420813184389082488323572336, −1.01008715951030289873307370305, −0.0383658207695245862308513334,
0.46970609245915368866890847824, 1.40856747363761933685530339354, 2.128763318490299160729877529136, 3.13862902528646066251171605350, 4.349949118022089938064039039723, 4.92463996268197731588220480224, 5.49358451889645664023789609423, 6.494034940427936310148505660063, 7.105659318487510557955701698443, 7.50213750801446690807121923779, 8.17419476965118541327028021694, 9.37960883848632204257388751649, 9.78203445671765789199698409052, 10.411751115908688623129939995124, 10.90093309410758796367265324034, 11.66124422477347937104744842318, 12.169075827578269255772233162401, 12.99973222007290763998816108260, 13.81409265819547957830733649407, 14.85854959726767701771304739880, 15.167935940604870699169705350272, 15.91191085537776275029463163970, 16.768439491548212257240147449989, 17.03168381107283045553622243839, 17.56138840181052875491417536316